Selamat Datang

Semoga blog ini dapat menambah wawasan dan pengetahuan untuk kita semua.

Sabtu, 12 Februari 2011

Kimia Unsur Non-Logam

Kimia Unsur Non-Logam

Ada sekitar 20 unsur non logam yang biasanya ditemukan sebagai anion
dalam senyawa ion atau sebagai unsur bebas. Dengan klasifikasi yang relatif
sederhana dimungkinkan untuk mempelajari nama, struktur, dan sifat utama
berbagai senyawa non logam ini. Hidrida, oksida, sulfida, dan halida sangat
penting dan merupakan menu utama dalam studi kimia anorganik padat baik
untuk studi saintifik maupun aplikasi.

4.1 Hidrogen dan hidrida
a Hidrogen
Hidrogen adalah unsur tersederhana terdiri atas satu proton dan satu elektron, dan paling
melimpah di alam semesta. Di bumi kelimpahannya ketiga setelah oksigen dan silikon, sekitar 1 %
massa semua unsur di bumi. Tak perlu dikatakan sebagian besar hidrogen di bumi ada sebagai air.
Karena kepolarannya dapat berubah dengan mudah antara hidrida (H-), atom (H), dan proton
(H+), hidrogen juga membentuk berbagai senyawa dengan banyak unsur termasuk oksigen dan
karbon. Oleh karena itu, hidrogen sangat penting dalam kimia.
Dar tiga jenis isotop hidrogen, deuterium, D, ditemukan oleh H. C. Urey dkk tahun 1932, dan
kemudian tritium, T, dipreparasi dari deuterium di tahun 1934. Sekitar 0.015% hidrogen ada
sebagai deuterium, dan dapat diperkaya dengan elektrolisis air. Tritium bersifat radioaktif dan
mengemisikan partikel β dengan waktu paruh 12.33 tahun. Karena massa deuterium dan tritium
sekitar dua kali dan tiga kali massa hidrogen, sifat fisik isotop, dan senyawa yang mengandung
isotop ini, cukup berbeda. Beberapa sifat isotop hidrogen dan air diberikan dalam Tabel 4.1.
Ketika ikatan E-H dalam senyawa hidrogen diubah menjadi E-D dengan substitusi deuterium,
frekuensi E-H dalam spektrum inframerahnya direduksi menjadi sekitar 1/√2-nya, yang sangat
bermanfaat untuk menentukan posisi atom hidrogen. Dalam beberapa kasus mungkin untuk
menyimpulkan bahwa pemutusan ikatan hidrogen adalah tahap penentu laju bila substitusi
deuterium menunjukkan efek yang drastis pada laju reaksi senyawa yang mengandung hidrogen.
Karena spin inti hidrogen adalah 1/2 dan karena kelimpahannya, hidrogen adalah nuklida yang
paling penting untuk spektroskopi NMR. NMR digunakan luas tidak hanya untuk identifikasi
senyawa organik, tetapi juga untuk kepentingan diagnostik seperti pengunaan MRI (magnetic

resonance imaging) air dalam tubuh. Organ manusia dapat diobservasi tanpa dilukai dengan metoda
ini.
Tabel 4.1 Sifat isotop hidrogen dan air.
Sifat H2 D2 T2 H2O D2O T2O
Titik leleh* 13.957 18.73 20.62 0.00 3.81 4.48
Titik didih 20.39 23.67 25.04 100.00 101.42 101.51
ρ (g.cm-3, 25°C) 0.9970 1.1044 1.2138
Temp. ρ maks (°C) 3.98 11.23 13.4
* hidrogen (K), air (°C).

Ada isomer spin inti molekul diatomik yang spinnya tidak nol. Khususnya dalam kasus molekul hidrogen, perbedaan sifatnya sangat signifikan. Spin para-hidrogen bersifat anti-paralel dan jumlahnya adalah 0 serta menghasilkan keadaan singlet. Spin orto-hidrogen adalah paralel dan jumlahnya 1 menghasilkan keadaan triplet. Karena para-hidrogen energinya lebih rendah, parahidrogen lebih stabil di suhu rendah. Rasio teoritik para-hidrogen adalah 100 % pada 0 K, tetapi menurun ke sekitar 25 % pada suhu kamar, karena rasio orto-hidrogen meningkat pada suhu lebih tinggi. Kromatografi gas and garis rotasi dalam spektrum elektronik H2 dapat membedakan kedua isomer hidrogen.

b Hidrida
Hidrida biner diklasifikasikan sesuai dengan posisi unsurnya dalam tabel periodik, dan oleh
karakter ikatannya. Hidrida alkali dan alkali tanah di blok s adalah senyawa ionik yang analog
dengan halida dan disebut dengan hidrida salin. Unsur blok p golongan 13-17 membentuk
hidrida kovalen molekular. Belum ada senyawa hidrida gas mulia yang pernah dilaporkan.
Beberapa unsur transisi blok d dan f membentuk hidrida logam yang menunjukkan sifat logam.
Logam-logam transisi yang tidak membentuk hidrida biner membentuk hidrida molekular
kompleks yang dikoordinasikan oleh ligan penstabil, seperti karbonil (CO), fosfin tersier (PR3),
atau siklopentadienil (C5H5) (rujuk bagian 6.1). Contoh-contoh khas hidrida diberikan di bawah
ini.
Hidrida salin
57
Litium hidrida, LiH, senyawa kristalin tak bewarna (titik leleh (melting point, mp) 680 oC). Li+ dan
H- membentuk kristal berstruktur garam dapur. Pelepasan kuantitatif gas hidrogen di anoda saat
dilakukan elektrolisis garam leburnya menyarankan keberadaan H-. Air bereaksi dengan hebat
dengan litium hidrida membebaskan gas hidrogen. Karena senyawa ini agak melarut dalam eter,
hidrida ini digunakan sebagai pereduksi di kimia organik.
Kalsium hidrida, CaH2, adalah padatan kristalin tak bewarna (mp 816 oC), dan bereaksi dengan
hebat dengan air membebaskan gas hidrogen. Hidrida ini digunakan sebagai pembentuk gas
hidrogen, atau bahan dehidrator untuk pelarut organik. Hidrida ini juga digunakan sebagai
reduktor.
Litium tetrahidridoaluminat, LiAlH4, adalah padatan kristalin tak bewarna (terdekomposisi di
atas 125oC) biasanya disebut litium aluminum hidrida. Hidrida melarut dalam eter, dan bereaksi
hebat dengan air. Hidrida ini digunakan sebagai reduktor dan bahan untuk hidrogenasi dan untuk
pengering pelarut organik.
Natrium tetrahidroborat, NaBH4, adalah senyawa padatan kristalin bewarna putih
(terdekomposisi pada 400 oC) biasanya disebut natrium borohidrida. Padatan ini larut dalam air
dan terdekomposisi pada suhu tingggi dengan melepaskan gas hidrogen. Padatan ini digunakan
sebagai bahan pereduksi untuk senyawa anorganik dan organik, dan untuk mempreparasi
kompleks hidrida, dsb.
Hidrida molekular
Semua hidrida kecuali hidrida karbon (metana) dan oksigen (air) adalah gas beracun dengan
kereaktifan sangat tinggi dan harus ditangani dengan sangat hati-hati. Walaupun terdapat berbagai
metoda untuk menghasilkan gas-gas ini di laboratorium, kini banyak gas ini mudah didapat di
silinder.
Diboran, B2H6, adalah gas beracun dan tak bewarna (mp -164.9 oC dan bp -92.6 oC) dengan bau
iritatif yang khas. Hidrida ini merupakan bahan reduktor kuat senyawa anorganik dan organik.
Bahan ini juga bermanfaat sebagai bahan hidroborasi untuk memasukkan gugus fungsi pada
olefin, setelah adisi olefin dengan reaksinya dengan reagen yang cocok.
58
Silan, SiH4, gas yang sangat mematikan dan tak bewarna (mp -185 oC dan bp -111.9 oC) dengan
bau yang menyengat dan juga disebut dengan monosilan.
Amonia, NH3, adalah gas beracun dan tak bewarna (mp -77.7 oC dan bp -33.4 oC) dengan bau
mengiritasi yang khas. Walaupun gas ini digunakan dalam banyak kasus sebagai larutan amonia
dalam air, yakni dengan dilarutkan dalam air, amonia cair juga digunakan sebagai pelarut non-air
untuk reaksi khusus. Sejak dikembangkannya proses Harber-Bosch untuk sintesis amonia di
tahun 1913, amonia telah menjadi senyawa yang paling penting dalam industri kimia dan
digunakan sebagai bahan baku banyak senyawa yang mengandung nitrogen. Amonia juga
digunakan sebagai refrigeran (di lemari pendingin).
Fosfin, PH3, gas sangat beracun dan tak bewarna (mp -133 oC dan bp -87.7 oC) dengan bau yang busuk, juga disebut dengan fosfor hidrida. Fosfin terbakar spontan di udara. Fosfin digunakan dalam pertumbuhan epitaksi, dalam kimia koordinasi logam transisi, dsb. Hidrogen sulfida, H2S, gas beracun dan tak bewarna (mp -85.5 oC and bp -60.7 oC) dengan bau telur busuk. Gas ini sering ditangani dengan tidak cukup hati-hati, gas ini sangat berbahaya dan harus ditangani dalam lingkungan yang ventilasinya baik. Gas ini digunakan untuk analisis kimia dengan cara pengendapan ion logam, pembuatan senyawa yang mengandung belerang, dsb. Hidrogen fluorida, HF, adalah gas tak bewarna, berasap, bertitik didih rendah (mp -83 oC dan
bp 19.5 oC), dengan bau yang mengiritasi. Gas ini biasa digunakan untuk mempreparasi senyawa
anorganik dan organik yang mengandung fluor. Karena permitivitasnya yang tinggi, senyawa ini
dapat digunakan sebagai pelarut non-air yang khusus. Larutan dalam air gas ini disebut asam
fluorat dan disimpan dalam wadah polietilen karena asam ini menyerang gelas.
Hidrida logam
Hidrida MHx yang menunjukkan sifat logam biasanya bertipe intertisi dan non stoikiometri
biasanya hidrogen menempati sebagian lubang dalam kisi logam. Biasanya x bukan bilangan bulat
dalam senyawa ini. Hidrida jenis ini yang dikenal meliputi hidrida dari Golongan 3 (Sc, Y),
Golongan 4 (Ti, Zr, Hf), Golongan 5 (V, Nb, Ta), Cr, Ni, Pd, dan Cu, tetapi hidrida logam lain di
Golongan 6 sampai 11 tidak dikenal. Paladium Pd bereaksi dengan gas hidrogen pada suhu
kamar, dan membentuk hidrida yang mempunyai komposisi PdHx (x < 1). Banyak hidrida logam 59 yang menunjukkan sifat hantaran logam. LaNi5 adalah senyawa paduan antara lantanum dan nikel, yang dapat menampung sampai 6 atom hidrogen atoms per sel satuan dan berubah menjadi LaNi5H6. Paduan ini menjadi salah satu kandidat untuk digunakan sebagai bahan penyimpan hidrogen untuk pengembangan mobil berbahan hidrogen. Latihan 4.1 Tuliskan bilangan oksidasi hidrogen dalam H2, NaH, NH3, dan HCl. [Jawab] H2 (0), NaH (-1), NH3 (+1), dan HCl (+1). Kompleks hidrida Senyawa kompleks yang berkoordinasi dengan ligan hidrida disebut kompleks hidrida. Logam transisi Golongan 6 sampai 10 yang tidak membentuk hidrida biner menghasilkan banyak kompleks hidrida dengan ligan tambahan seperti karbonil dan fosfin tersier. Walaupun baru akhir tahun 1950-an hidrida diterima sebagai ligan, ribuan senyawa kompleks kini telah dikenal. Lebih lanjut, dengan sintesis kompleks hidrogen molekul di tahun 1980-an, kimia hidrogen mengambil peran baru. Riset dalam katalisis hidrokarbon homogen dengan peran penting dimainkan oleh hidrida atau hidrogen terus berkembang. 4.2 Unsur golongan utama periode 2 dan 3 dan senyawanya a Boron Boron yang telah dimurnikan adalah padatan hitam dengan kilap logam. Sel satuan kristal boron mengandung 12, 50, atau 105 atom boron, dan satuan struktural ikosahedral B12 terikat satu sama lain dengan ikatan 2 pusat 2 elektron (2c-2e) dan 3 pusat 2 elektron (3c-2e) (ikatan tuna elektron) antar atom boron (Gambar 4.1). Boron bersifat sangat keras dan menunjukkan sifat semikonduktor. 60 Gambar 4.1 Struktur kristal boron dengan sel satuan ikosahedral. Kimia boran (boron hidrida) dimulai dengan riset oleh A. Stock yang dilaporkan pada periode 1912-1936. Walaupun boron terletak sebelum karbon dalam sistem periodik, hidrida boron sangat berbeda dari hidrokarbon. Struktur boron hidrida khususnya sangat tidak sesuai dengan harapan dan hanya dapat dijelaskan dengan konsep baru dalam ikatan kimia. Untuk kontribusinya dalam kimia anorganik boron hidrida, W. N. Lipscomb mendapatkan hadiah Nobel Kimia tahun 1976. Hadiah Nobel lain (1979) dianugerahkan ke H. C. Brown untuk penemuan dan pengembangan reaksi dalam sintesis yang disebut hidroborasi. Karena berbagai kesukaran sehubungan dengan titik didih boran yang rendah, dan juga karena aktivitas, toksisitas, dan kesensitifannya pada udara, Stock mengembangkan metoda eksperimen baru untuk menangani senyawa ini dalam vakum. Dengan menggunakan teknik ini, ia mempreparasi enam boran B2H6, B4H10, B5H9, B5H11, B6H10, dan B10H14 dengan reaksi magnesium borida, MgB2, dengan asam anorganik, dan menentukan komposisinya. Namun, riset lanjutan ternyata diperlukan untuk menentukan strukturnya. Kini, metoda sintesis yang awalnya digunakan Stock menggunakan MgB2 sebagai pereaksi hanya digunakan untuk mempreparasi B6H10. Karena reagen seperti litium tetrahidroborat, LiBH4, dan natrium tetrahidroborat, NaBH4, kini mudah didapat, dan diboran, B2H6, yang dipreparasi dengan reaksi 3 LiBH4 + 4 BF3.OEt2 → 2 B2H6 + 3 LiBF4 + 4 Et2O, juga mudah didapat, boran yang lebih tinggi disintesis dengan pirolisis diboran. 61 Teori baru diusulkan untuk menjelaskan ikatan dalam diboran, B2H6. Walaupun struktur yang hampir benar, yakni yang mengandung jembatan hidrogen, telah diusulkan tahun 1912, banyak kimiawan lebih suka struktur mirip etana, H3B-BH3, dengan mengambil analoginya dengan hidrokarbon. Namun, H. C. Longuet-Higgins mengusulkan konsep ikatan tuna elektron 3-pusat 2-elektron 3-center 2-bond (ikatan 3c-2e bond) dan bahwa strukturnya memang benar seperti dibuktikan dengan difraksi elektron tahun 1951 (Gambar 4.2). Gambar 4.2 Struktur diboran. Struktur ini juga telah dielusidasi dengan difraksi elektron, analisis struktur kristal tunggal sinar-X, spektroskopi inframerah, dsb, dan memang boran terbukti mengandung ikatan 3c-2e B-H-B dan B-B-B berikut: selain ikatan kovalen biasa 2c-2e B-H dan B-B. Struktur semacam ini dapat ditangani dengan sangat memuaskan dengan teori orbital molekul. Boran diklasifikasikan menjadi closo, nido, arachno, dsb. sesuai dengan struktur kerangka atom boron. 62 Closo-boran [BnHn]2- memiliki struktur polihedral tertutup, n atom boron terikat pada n atom hidrogen, misalnya dalam oktahedral regular [B6H6]2- dan ikosahedral [B12H12]2-. Boran deret ini tidak mengandung ikatan B-H-B. Boran BnHn+4, seperti B5H9, membentuk struktur dengan ikatan B-B, B-B-B, dan B-H-B dan kehilangan sudut polihedral closo boran, dan disebut dengan jenis boran nido. Boran BnHn+6, seperti B4H10, memiliki struktur yang kehilangan dua sudut dari tipe closo dan membentuk struktur yang lebih terbuka. Kerangka juga dibangun oleh ikatan B-B, BB- B, dan B-H-B, dan jenis ini disebut boran jenis arachno. Sruktur-strukturnya diberikan di Gambar 4.3. Gambar 4.3 Struktur boran. 63 Tidak hanya diboran, boran yang lebih tinggi juga merupakan senyawa yang tuna elektron yang sukar dijelaskan dengan struktur Lewis yang berbasiskan ikatan kovalen 2c -2e. Latihan 4.2 Mengapa diboran disebut senyawa tuna elektron? [Jawab] Tuna elektron karena hanya mengandung 12 elektron valensi dari atom boron dan hidrogen, sedang untuk membentuk 8 (ikatan B-B dan B-H) diperlukan 16 elektron. K. Wade merangkumkan hubungan jumlah elektron yang digunakan untuk ikatan kerangka dan struktur boran dan mengusulkan aturan empiris yang disebut aturan Wade. Menurut aturan ini, bila jumlah atom boron n, jumlah elektron valensi kerangkanya 2(n+1) didapatkan jenis closo, 2(n+2) untuk jenis nido, dan 2(n+3) untuk jenis arachno. Hubungan antara struktur kerangka dan jumlah elektron valensi adalah masalah penting dalam senyawa kluster logam transisi, dan aturan Wade telah memainkan peranan yang signifikan dalam memajukan pengetahuan di bidang struktur senyawa kluster ini. b Karbon Grafit, intan, fuleren, dan karbon amorf adalah aloptrop karbon. Biasanya atom karbon membentuk empat ikatan dengan menggunakan empat elektron valensi yang dimilikinya. Grafit Grafit berstruktur lapisan yang terdiri atas cincin atom karbon beranggotakan 6 yang mirip cincin benzen yang terkondensasi tanpa atom hidrogen (Gambar 4.4). Jarak karbon-karbon dalam lapisan adalah 142 pm dan ikatannya memiliki karakter ikatan rangkap analog dengan senyawa aromatik. Karena jarak antar lapisan adalah 335 pm dan lapis-lapis tersebut diikat oleh ikatan yang relatif lemah yakni gaya van der Waals, lapisan-lapisan ini dengan mudah akan saling menggelincir bila dikenai gaya. Hal inilah yang merupakan asal mula sifat lubrikasi grafit. Berbagai molekul, seperti logam alkali, halogen, halida logam, dan senyawa organik dapat menginterkalasi lapisan grafit dan membentuk senyawa interkalasi. Grafit memiliki sifat semi-logam, konduktivitasnya (10-3 Ωcm paralel dengan lapisan dan hantarannya sekitar 100 kali lebih kecil dalam arah tegak lurus lapisan). 64 Gambar 4.4 Struktur grafit Intan Strukturnya disebut struktur intan (Gambar 4.5). Sel satuan intan terdiri atas 8 atom karbon dan setiap atom karbon berkoordinasi 4 berbentuk tetrahedral. Intan adalah zat terkeras yang dikenal, dengan kekerasan 10 Mhos. Intan dengan hantaran panas sangat tinggi walaupun secara listrik bersifat insulator. Walaupun dulunya sumber padatan yang berharga ini hanya yang terbentuk secara alami, intan industrial kini secara komersial banyak dihasilkan dengan proses pada suhu tinggi (1200 oC atau lebih tinggi) dan tekanan tinggi (5 GPa atau lebih) dari grafit dengan katalis logam. Akhir-akhir ini, lapis tipis intan telah dibuat dengan pirolisis hidrokarbon pada suhu relatif rendah (sekitar 900 oC) dan tekanan yang juga relatif rendah (sekitar 102 Pa), dan digunakan untuk penggunaan sebagai pelapis, dsb. Gambar 4.5 Struktur intan Fuleren 65 Fuleren adalah nama generik untuk alotrop karbon 3 dimensi, dengan molekul C60 yang berbentuk bola sepak merupakan contoh khas (Gambar 4.6). R. E. Smalley, H. W. Kroto dkk mendeteksi C60 dalam spektrum massa produk pemanasan grafit dengan laser pada tahun 1985, dan isolasi fuleren dari apa yang disebut jelaga "soot" dilaporkan pada 1991. Strukturnya adalah ikosahedral terpancung (di sudut-sudutnya) dan antar atom karbonnya ada karakter ikatan rangkap. Fuleren larut dalam pelarut organik, dalam benzen larutannya bewarna ungu. Biasanya, fuleren diisolasi dan dimurnikan dengan kromatografi. Berbagai riset dalam kereaktifan dan sifat fisik fuleren misalnya sifat superkonduktornya sangat populer. Selain C60, C70 dan karbon nanotube kini juga menarik banyak minat riset. Gambar 4.6 Struktur C60. c Silikon Silikon adalah unsur yang paling melimpah kedua di kerak bumi setelah oksigen. Sebagian besar silikon ada sebagai komponen batu silikat dan unsur bebasnya tidak ditemukan di alam. Oleh karena itu, silikon dihasilkan dengan mereduksi kuarsa dan pasir dengan karbon berkualitas tinggi dengan menggunakan tungku listrik. Silikon dengan kemurnian tinggi dihasilkan dengan reduksi SiHCl3 dengan menggunakan hidrogen. SiHCl3 dihasilkan dengan melakukan hidrokhlorasi silikon berkemurnian rendah diikuti dengan pemurnian. Silikon yang digunakan untuk semikonduktor dimurnikan lebih lanjut dengan metoda pelelehan berzona kristal Czochralski. Kristal silikon (mp 1410 oC) memiliki kilap logam dan mengkristal dengan struktur intan. Ada tiga isotop silikon, 28Si (92.23 %), 29Si (4.67%), dan 30Si (3.10%). Sebab spin intinya I = 1/2, 29Si digunakan dalam studi NMR senyawa silikon organik atau silikat (NMR padatan). 66 Silikat dan senyawa organosilikon menunjukkan variasi struktur. Bab 4.3 (c) mendeskripsikan sifat silikat. Kimia organosilikon merupakan area riset dalam kima anorganik yang sangat aktif. Kimia silikon berkembang dengan pesat sejak perkembangan proses industri untuk menghasilkan senyawa organosilikon dengan reaksi langsung metil khlorida CH3Cl dengan kehadiran katalis tembaga. Proses historis ini ditemukan oleh E. G. Rochow tahun 1945. Resin silikon, karet silikon, dan minyak silikon digunakan di banyak aplikasi. Akhir-akhir ini, senyawa silikon telah digunakan dengan meluas dalam sintesis organik selektif. Walaupun silikon adalah unsur tetangga karbon, sifat kimianya sangat berbeda. Contoh yang sangat terkenal kontras adalah antara silikon dioksida SiO2 dengan struktur 3-dimensi, dan gas karbon dioksida, CO2. Senyawa pertama dengan ikatan ganda silikon-silikon adalah (Mes)2Si=Si(Mes)2 (Mes adalah mesitil C6H2(CH3)3) dilaporkan tahun 1981, kontras dengan ikatan rangkap karbon-karbon yang sangat banyak dijumpai. Senyawa seperti ini digunakan untuk menstabilkan ikatan yang tidak stabil dengan substituen yang meruah (kestabilan kinetik). Latihan 4.3 mengapa sifat CO2 dan SiO2 berbeda? [Jawab] Sifatnya berbeda karena CO2 adalah gas molekular yang terdiri atas tiga atom, sedang SiO2 adalah senyawa padat dengan ikatan kovalen antara atom silikon oksigen. d Nitrogen Nitrogen adalah gas tak bewarna dan tak berasa yang menempati 78.1% atmosfer (persen volume). Nitrogen dihasilkan dalam jumlah besar bersama oksigen (bp -183.0 oC) dengan mencairkan udara (bp -194.1 oC) dan diikuti proses memfraksionasi nitrogen (bp -195.8 oC). Nitrogen adalah gas inert di suhu kamar namun dikonversi menjadi senyawa nitrogen oleh proses fiksasi biologis dan melalui sintesis menjadi amonia di industri. Sebab dari keinertannya adalah tingginya energi ikatan rangkap tiga N≡N. Dua isotop nitrogen adalah 14N (99.634 %) dan 15N (0.366 %). Kedua isotop ini aktif NMR. e Fosfor Fosfor diproduksi dengan mereduksi kalsium fosfat, Ca3(PO4)2, dengan batuan kuarsa dan batu bara. Alotrop fosfor meliputi fosfor putih, fosfor merah, dan fosfor hitam. 67 Fosfor putih adalah molekul dengan komposisi P4 (Gambar 4.7). Fosfor putih memiliki titik leleh rendah (mp 44.1 oC) dan larut dalam benzen atau karbon disulfida. Karena fosfor putih piroforik dan sangat beracun, fosfor putih harus ditangani dengan hati-hati. Gambar 4.7 Strktur fosfor putih. Fosfor merah berstruktur amorf dan strukturnya tidak jelas. Komponen utamanya diasumsikan berupa rantai yang dibentuk dengan polimerisasi molekul P4 sebagai hasil pembukaan satu ikatan P-P. Fosfor merah tidak bersifat piroforik dan tidak beracun, dan digunakan dalam jumlah yang sangat banyak untuk memproduksi korek, dsb. Fosfor hitam adalah isotop yang paling stabil dan didapatkan dari fosfor putih pada tekanan tinggi (sekitar 8 GPa). Fosfor hitam memiliki kilap logam dan berstruktur lamelar. Walaupun fosfor hitam bersifat semikonduktor pada tekanan normal, fosfor hitam menunjukkan sifat logam pada tekanan tinggi (10 GPa). Senyawa fosfor sebagai ligan Fosfin tersier, PR3, dan fosfit tersier, P(OR)3, merupakan ligan yang sangat penting dalam kimia kompleks logam transisi. Khususnya trifenilfosfin, P(C6H5)3, trietil fosfin, P(C2H5)3, dan turunannya merupakan ligan yang sangat berguna dalam banyak senyawa kompleks, sebab dimungkinkan untuk mengontrol dengan tepat sifat elektronik dan sterik dengan memodifikasi substituennya (rujuk bagian 6.3 (c)). Walaupun ligan-ligan ini adalah donor sigma, ligan-ligan ini dapat menunjukkan karakter penerima pi dengan mengubah substituennya menjadi penerima elektron Ph (fenil), OR, Cl, F, dsb. Urutan karakter penerima elektron diperkirakan dari frekuensi 68 uluran C-O dan pergeseran kimia 13C NMR senyawa logam karbonil fosfin atau fosfit tersubstitusi adalah sbb (Ar adalah aril dan R adalah alkil). PF3 > PCl3 > P(OAr)3 > P(OR)3 > PAr3 > PRAr2 > PR2Ar > PR3
Di pihak lain, C. A. Tolman telah mengusulkan sudut pada ujung kerucut yang mengelilingi
substituen ligan fosfor pada jarak kontak van der Waals dapat digunakan sebagai parameter untuk
mengukur keruahan sterik fosfin atau fosfit. Parameter ini, disebut sudut kerucut, dan telah
digunakan secara meluas (Gambar 4.8). Bila sudut kerucut besar, bilangan koordinasi akan
menurun karena halangan sterik, dan konstanta kesetimbangan disosiasi dan laju disosiasi ligan
fosfor menjadi lebih besar (Tabel 4.2). Ungkapan numerik efek sterik sangat bermanfaat dan
banyak studi telah dilakukan untuk mempelajari hal ini.
Gambar 4.8 Sudut kerucut.
Tabel 4.2 Sudut kerucut fosfin dan fosfit tersier.
69
4.3 Oksigen dan oksida
a Oksigen
Dioksigen, O2, adalah gas tak berwarna dan tak berbau (bp -183.0 oC) menempati 21% udara (%
volume). Karena atom oksigen juga komponen utama air dan batuan, oksigen adalah unsur yang
paling melimpah di kerak bumi. Walaupun unsur ini melimpah, oksigen dibuktikan sebagai unsur
baru di abad ke-18. Karena kini sejumlah besar oksigen digunakan untuk produksi baja, oksigen
dipisahkan dalam jumlah besar dari udara yang dicairkan.
Isotop oksigen 16O (kelimpahan 99.762 %), 17O (0.038%), dan 18O (0.200%). 17O memiliki spin I
= 5/2 dan isotop ini adalah nuklida yang penting dalam pengukuran NMR. 18O digunakan
sebagai perunut dalam studi mekanisme reaksi. Isotop ini juga bermanfaat untuk penandaan garis
absorpsi spektrum IR atau Raman dengan cara efek isotop.
Sebagaimana dideskripsikan di bagian 2.3 (e), dioksigen, O2, dalam keadaan dasar memiliki dua
spin yang tidak paralel dalam orbital molekulnya, menunjukkan sifat paramagnetisme dan disebut
oksigen triplet. Dalam keadaan tereksitasi, spinnya berpasangan dan dioksigen menjadi
diamagnetik, disebut oksigen singlet. Oksigen singlet sangat penting untuk sintesis kimia, sebab
oksigen singlet ini memiliki kereaktifan karakteristik. Oksigen singlet dihasilkan dalam larutan
dengan reaksi transfer energi dari kompleks yang teraktivasi oleh cahaya atau dengan pirolisis
ozonida (senyawa O3).
Ion superoksida, O2-, dan ion peroksida, O2
2-, adalah anion-anion dioksigen (Tabel 4.3).
Keduanya dapat diisolasi sebagai garam logam alkali. Ada keadaan oksidasi lain, O2
+, yang disebut
kation dioksigen (1+), dan dapat diisolasi sebagai garam dengan anion yang cocok.
Tabel 4.3 Bilangan oksidasi oksigen.
70
Ozon, O3, adalah alotrop oksigen dan merupakan gas tak stabil dengan bau yang mengiritasi.
Ozon adalah molekul bengkok terdiri dari tiga atom (bersudut 117o) dan memiliki kereaktifan
yang unik. Akhir-akhir ini ozon diketahui memiliki peran yang sangat penting dalam menyaring
radiasi ultraviolet dari matahari yang membahayakan, dan memegang peranan penting dalam
melindungi kehidupan di bumi dari kerusakan fotokimia. Kini jelas bahwa khlorofluorokarbon,
yang sering digunakan sebagai refrigeran atau sebagai pembersih komponen elektronik, juga
merusak lapisan ozon, dan aksi yang sesuai telah dilakukan dalam skala global untuk
menanggulangi masalah lingkungan yang serius ini.
b Oksida hidrogen
Oksigen sangat reaktif, dan bereaksi langsung dengan banyak unsur membentuk oksida. Air
adalah oksida hidrogen dan perannya sangat krusial bagi lingkungan global dan kehidupan.
Air H2O
Sembilan puluh tujuh persen air ada di laut, 2 % ada sebagai es di kutub dan air tawar hanya
merupakan sedikit sisanya saja. Sifat kimia dan fisika dasar air sangat penting dalam kimia. Sifatsifat
kimia utamanya diberikan dalam Tabel 4.1. Sebagian besar sifat anomali air disebabkan oleh
ikatan hidrogen yang kuat. Sifat fisik air berbeda cukup besar dengan keberadaan isotop hidrogen.
Paling tidak ada 9 polimorf es yang diketahui dan struktur kristalnya bergantung pada kondisi
pembekuan es.
Air memiliki sudut ikatan 104.5o dan panjang ikatan 95.7 pm dalam molekul bebasnya. Telah
dideskripsikan di bagian 3.4 (b) autoionisasi air menghasilkan ion oksonium, H3O+. Penambahan
air lebih lanjut menghasilkan [H(OH2)n]+ (H5O2
+, H7O3
+, H9O4
+, dan H13O6
+), dan struktur
berbagai spesies ini telah ditentukan.
Hidrogen peroksida, H2O2
Hidrogen peroksida adalah cairan yang hampir tak berwarna (mp -0.89 oC dan bp
(diekstrapolasikan) 151.4 oC), bersifat sangat eksplosif dan berbahaya dalam konsentrasi tinggi.
Biasanya hidrogen peroksida digunakan sebagai larutan encer, tetapi larutan dalam air 90 %
digunakan. Karena hidrogen peroksida digunakan dalam jumlah besar sebagai bahan
pengelantang untuk serat dan kertas, proses sintetik industri skala besar telah dibuat. Proses ini
71
menggunakan reaksi katalitik sangat lunak untuk menghasilkan larutan encer hidrogen peroksida
dari udara dan hidrogen dengan menggunakan antrakuinon tersubstitusi. Larutan encer ini
kemudian dipekatkan. Bila deuterium peroksida dipreparasi di laboratorium, reaksi berikut
digunakan.
K2S2O8 + 2 D2O → D2O2 + 2 KDSO4
Hidrogen peroksida terdekomposisi menjadi air dan oksigen dengan keberadaan mangan dioksida,
MnO2. Hidrogen peroksida dapat bereaksi sebagai oksidator maupun reduktor bergantung koreaktannya.
Potensial reduksinya dalam asam diungkapkan dalam diagram Latimer (lihat bagian
3.3 (c)) :
c Silikon oksida
Silikon oksida dibentuk dengan menggunakan sebagai satuan struktural dan menggunakan
bersama atom oksigen di sudut-sudutnya. Silikon dioksida ini diklasifikasikan berdasarkan jumlah
atom oksigen dalam tetrahedra SiO4 yang digunakan bersama, karena hal ini akan menentukan
komposisi dan strukturnya. Bila tetrahedra SiO4 dihubungkan dengan menggunakan bersama
sudut, struktur senyawa yang dihasilkan adalah polimer yang berupa rantai, cincin, lapisan atau
struktur 3-dimensi bergantung pada modus hubungannya dengan satuan tetangganya. Ungkapan
fraksional digunakan untuk menunjukkan modus jembatannya. Pembilang dalam bilangan
pecahan tersebut jumlah oksigen yang digunakan bersama dan pembaginya 2, yang berarti satu
atom oksigen digunakan bersama dua tetrahedra. Rumus empiris dan setiap strukturnya dalam
bentuk polihedra koordinasi diilustrasikan di gambar 4.9 berikut.
Satu oksigen digunakan bersama (SiO3O1/2)3- = Si2O7
6-
Dua oksigen digunakan bersama (SiO2O2/2)n
2n- = (SiO3)n
2n-
Tiga atom oksigen digunakan bersama (SiOO3/2)n
n- = (Si2O5)n
2n72
Amalgamasi antara penggunaan bersama dua dan tiga oksigen [(Si2O5)(SiO2O2/2)2]n
6- =
(Si4O11)n
6-
Empat atom oksigen digunkan bersama. (SiO4/2)n = (SiO2)n
Silikat dengan berbagai metoda struktur ikatan silang terdapat dalam batuan, pasir, tanah, dsb.
Gambar 4.9 Berbagai modus penggunaan bersama tetrahedra SiO4.
73
Aluminosilikat
Terdapat banyak mineral silikon oksida dengan beberapa atom silikonnya digantikan dengan atom
aluminum. Mineral semacam ini disebut aluminosilikat. Atom aluminum menggantikan atom
silikon dalam tetrahedral atau menempati lubang oktahedral atom oksigen, membuat struktur
yang lebih kompleks. Substitusi silikon tetravalen dengan aluminum trivalen menyebabkan
kekurangan muatan yang harus dikompensasi dengan kation lain seperti H+, Na+, Ca2+, dsb.
Felspar adalah mineral khas aluminosilikat, dan KAlSi3O8 (ortoklas) dan NaAlSi3O8 (albit) juga
dikenal. Felspar mempunyai struktur 3 dimensi dengan semua sudut tetrahedra SiO4 dan AlO4
digunakan bersama.
Di pihak lain, lapisan 2 dimensi terbentuk bila satuan [AlSiO5]3- digunakan bersama, dan bila
kation berkoordinasi 6 dimasukkan di antar lapisan dihasilkanlah mineral berlapis semacam mika.
Bila jumlah oksigennya tidak cukup untuk membentuk oktahedra antar lapis, ion hidroksida akan
terikat pada kation Al insterstial. Muskovit, KAl2(OH)2Si3AlO10, adalah suatu jenis mika yang
berstruktur seperti ini dan sangat mudah di”kupas”.
Zeolit
Salah satu aluminosilikat yang penting adalah zeolit. Zeolit ditemukan di alam dan berbagai zeolit
kini disintesis dengan jumlah besar di industri. Tetrahedra SiO4 dan AlO4 terikat melalui
penggunaan bersama oksigennya dan membentuk lubang dan terowongan dengan berbagai
ukuran. Strukturnya merupakan komposit dari satuan struktur tetrahedra MO4. Misalnya struktur
di Gambar 4.10, satuan dasarnya adalah kubus hasil leburan 8 MO4, prisma heksagonal leburan 12
MO4, dan oktahedra terpancung leburan 24 MO4.
Gambar 4.10 Struktur zeolit A.
74
Silikon atau aluminum terletak di sudut polihedra dan oksigen yang digunakan bersama di tengah
sisi itu (penting untuk diingat cara penggambaran ini berbeda dengan cara penggambaran struktur
yang telah diberikan di bagian sebelumnya).
Bila polihedra-polihedra ini berikatan, berbagai jenis struktur zeolit akan dihasilkan. Misalnya
oktahedra terpancung yang disebut dengan kurungan β adalah struktur dasar zeolit A sintetik,
Na12(Al12Si12O48)].27H2O, dan bagian segi empatnya dihubungkan melalui kubus. Dapat dilihat
bahwa terowongan oktagonal B terbentuk bila 8 oktahedra terpancung diikat dengan cara ini.
Struktur yang akan dihasilkan bila bagian heksagon bersambungan melalui prisma heksagon
adalah faujasit, NaCa0.5(Al2Si5O14)] .10 H2O.
Kation logam alkali atau alkali tanah berada dalam lubangnya, dan jumlah kation ini meningkat
dengan meningkatnya aluminum untuk mengkompensasi kekurangan muatan. Struktur zeolit
memiliki banyak lubang tempat kation dan air bermukim. Kation ini dapat dipertukarkan.
Dengan menggunakan sifat pertukaran kation ini, zeolit digunakan dalam jumlah besar sebagai
pelunak air sadah. Zeolit terdehidrasi (didapat dengan pemanasan) akan mengabsorpsi air dengan
efisien, zeolit juga digunakan sebagai pengering pelarut atau gas. Zeolit kadang juga disebut
dengan penyaring molekular, karena ukuran lubang dan terowongannya berubah untuk zeolit
yang berbeda dan dimungkinkan untuk memisahkan molekul organik dengan zeolit berdasarkan
ukurannya. Zeolit dapat digunakan untuk mereaksikan dua molekul dalam lubangnya asal
ukurannya memadai dan dapat digunakan sebagai katalis untuk reaksi selektif.
Misalnya, sintesis zeolit ZSM-5 sangat bermanfaat sebagai katalis untuk mengubah metanol
menjadi gasolin. Zeolit ini dapat dipreparasi secara hidrotermal dalam autoklaf (wadah bertekanan
tinggi) pada suhu sekitar 100 °C dengan menggunakan meta-natrium aluminat, NaAlO2, sebagai
sumber aluminum dan sol silika sebagai sumber silikon oksida dengan kehadiran
tetrapropilamonium bromida, Pr4NBr, dalam reaksi. Bila garam amoniumnya dihilangkan dengan
kalsinasi pada 500°C, struktur zeolitnya akan tinggal.
d Oksida nitrogen
Berbagai oksida nitrogen akan dibahas dari yang berbilangan oksidasi rendah ke yang berbilangan
oksidasi tinggi (lihat Tabel 4.4).
75
Tabel 4.4 Berbagai oksida khas unsur golongan utama.
Dinitrogen monoksida, N2O. Oksida monovalen nitrogen. Pirolisis amonium nitrat akan
menghasilkan oksida ini melalui reaksi:
NH4NO3 → N2O + 2 H2O (pemanasan pada 250 °C).
Walaupun bilangan oksidasi hanya formalitas, merupakan hal yang menarik dan simbolik
bagaimana bilangan oksidasi nitrogen berubah dalam NH4NO3 membentuk monovalen nitrogen
oksida (+1 adalah rata-rata dari -3 dan +5 bilangan oksidasi N dalam NH4
+ dan NO3
-). Jarak
ikatan N-N-O dalam N2O adalah 112 pm (N-N) dan 118 pm (N-O), masing-masing berkaitan
dengan orde ikatan 2.5 dan 1.5. N2O (16e) isoelektronik dengan CO2 (16 e). Senyawa ini
digunakan secara meluas untuk analgesik.
Nitrogen oksida, NO. Oksida divalen nitrogen. Didapatkan dengan reduksi nitrit melalui reaksi
berikut:
KNO2 + KI + H2SO4 → NO + K2SO4 + H2O + ½ I2
Karena jumlah elektron valensinya ganjil (11 e), NO bersifat paramagnetik. Jarak N-O adalah 115
pm dan mempunyai karakter ikatan rangkap. Elektron tak berpasangan di orbital π* antiikatan
76
dengan mudah dikeluarkan, dan NO menjadi NO+ (nitrosonium) yang isoelektronik dengan CO.
Karena elektronnya dikeluarkan dari orbital antiikatan, ikatan N-O menjadi lebih kuat. Senyawa
NOBF4 dan NOHSO4 mengandung kation ini dan digunakan sebagai oksidator 1 elektron.
Walaupun NO sebagai gas monomerik bersifat paramagnetik, dimerisasi pada fasa padatnya akan
menghasilkan diamagnetisme. NO merupakan ligan kompleks logam transisi yang unik dan
membentuk kompleks misalnya [Fe(CO2)(NO)2], dengan NO adalah ligan netral dengan 3
elektron. Walaupun M-N-O ikatannya lurus dalam kompleks jenis ini, sudut ikatan M-N-O
berbelok menjadi 120° - 140° dalam [Co(NH3)5(NO)]Br2, dengan NO- adalah ligan 4 elektron.
Akhir-akhir ini semakin jelas bahwa NO memiliki berbagai fungsi kontrol biologis, seperti aksi
penurunan tekanan darah, dan merupakan spesi yang paling penting, setelah ion Ca2+, dalam
transduksi sinyal.
Dinitrogen trioksida, N2O3. Bilangan oksidasi nitrogen dalam senyawa ini adalah +3, senyawa
ini tidak stabil dan akan terdekomposisi menjadi NO dan NO2 di suhu kamar. Senyawa ini
dihasilkan bila kuantitas ekuivalen NO dan NO2 dikondensasikan pada suhu rendah. Padatannya
berwarna biru muda, dan akan bewarna biru tua bila dalam cairan, tetapi warnanya akan memudar
pada suhu yang lebih tinggi.
Nitrogen dioksida, NO2, merupakan senyawa nitrogen dengan nitrogen berbilangan oksidasi
+4. NO2 merupakan senyawa dengan jumlah elektron ganjil dengan elektron yang tidak
berpasangan, dan berwarna coklat kemerahan. Senyawa ini berada dalam kesetimbangan dengan
dimer dinitrogen tetraoksida, N2O4, yang tidak bewarna. Proporsi NO2 adalah 0.01 % pada -11
°C dan meningkat perlahan menjadi 15,9% pada titik didihnya (21.2°C), menjadi 100% pada
140°C.
N2O4 dapat dihasilkan dengan pirolisis timbal nitrat
2 Pb(NO3)2 → 4NO2 + 2PbO+O2 pada 400 oC
Bila NO2 dilarutkan dalam air dihasilkan asam nitrat dan nitrit:
2 NO2 + H2O → HNO3+HNO2
77
Dengan oksidasi satu elektron, NO2
+ (nitroil) terbentuk dan sudut ikatan berubah dari 134o dalam
NO2 netral menjadi 180o. Di pihak lain, dengan reduksi satu elektron, terbentuk ion NO2
- (nitrito)
dengan sudut ikatan 115o.
Dinitrogen pentoksida, N2O5, didapatkan bila asam nitrat pekat secara perlahan didehidrasi
dengan fosfor pentoksida pada suhu rendah. Senyawa ini menyublim pada suhu 32.4 oC. Karena
dengan melarutkannya dalam air akan dihasilkan asam nitrat, dinitrogen pentoksida juga disebut
asam nitrat anhidrat.
N2O5 + H2O → 2 HNO3
Walaupun pada keadaan padat dinitrogen pentoksida merupakan pasangan ion NO2NO3 dengan
secara bergantian lokasi ion ditempati oleh ion lurus NO2
+ dan ion planar NO3
-, pada keadaan gas
molekul ini adalah molekular.
Asam okso
Asam okso nitrogen meliputi asam nitrat, HNO3, asam nitrit, HNO2, dan asam hiponitrat,
H2N2O2. Asam nitrat, HNO3, merupakan asam yang paling penting di industri kimia, bersama
dengan asam sulfat dan asam khlorida. Asam nitrat diproduksi di industri dengan proses Ostwald,
yakni oksidasi amonia dari bilangan oksidasi -3 ke +5. Karena energi bebas Gibbs konversi
langsung dinitrogen ke nitrogen terdekatnya NO2 mempunyai nilai positif, dengan kata lain secara
termodinamika tidak disukai, maka dinitrogen pertama direduksi menjadi amonia, dan amonia
kemudian dioksisasi menjadi NO2.
Asam nitrat, HNO3. Asam nitrat komersial adalah larutan dalam air dengan konsentrasi sekitar
70% dan distilasi vakum larutan 70 % ini dalam kehadiran fosfor pentoksida akan menghasilkan
asam nitrat murni. Karena asam nitrat adalah oksidator kuat dan pada saat yang sama adalah asam
78
kuat, asam nitrat dapat melarutkan logam (tembaga, perak, timbal, dsb.) yang tidak larut dalam
asam lain. Emas dan platina bahkan dapat dilarutkan dalam campuran asam nitrat dan asam
khlorida (air raja). Ion nitrat, NO3
-, dan ion nitrit, NO2
-, membentuk berbagai macam koordinasi
bila menjadi ligan dalam senyawa kompleks logam transisi.
Asam nitrit, HNO2. Walaupun tidak dapat diisolasi sebagai senyawa murni, larutan asam nitrit
dalam air adalah larutan asam lemah (pKa = 3.15 pada 25 oC) dan merupakan reagen yang
penting. Karena NaNO2 digunakan dalam industri untuk produksi hidroksilamin (NH2OH) dan
juga digunakan untuk diazotinasi amin aromatik, senyawa ini sangat penting untuk pembuatan
pewarna dan obat azo. Di antara berbagai bentuk koordinasi NO2
- kini telah dikenal isomernya,
ligan monodentat nitro (N yang berkoordinasi) dan nitrito (O yang berkoordinasi) telah
ditemukan di abad ke-19.
e Oksida Fosfor
Struktur oksida fosfor P4O10, P4O9, P4O7, dan P4O6 telah ditentukan.
Fosfor pentoksida, P4O10, adalah padatan kristalin putih dan dapat tersublimasi, terbentuk bila
fosfor dioksidasi dengan sempurna. Empat atom fosfor menempati tetrahedra dan dijembatani
oleh atom-atom oksigen (lihat Gambar 2.12).
Karena atom oksigen diikat ke setiap atom fosfor, polihedra koordinasi oksigen juga tetrahedral.
Bila P4O10 molekular dipanaskan, terbentuk isomer yang berstruktur gelas. Bentuk gelas ini
merupakan polimer yang terdiri atas tetrahedra fosfor oksida dengan komposisi yang sama dan
dihubungkan satu sama lain dalam lembaran-lembaran. Karena senyawa ini sangat reaktif pada
air, senyawa ini digunakan sebagai bahan pengering. Tidak hanya sebagai desikan, tetapi
merupakan bahan dehidrasi yang kuat, dan N2O5 atau SO3 dapat dibentuk dengan
mendehidrasikan HNO3 dan H2SO4 dengan fosfor pentoksida. Fosfor pentoksida membentuk
asam fosfat, H3PO4, bila direaksikan dengan sejumlah air yang cukup, tetapi bila air yang
digunakan tidak cukup, berbagai bentuk asam fosfat terkondensasi akan dihasilkan bergantung
kuantitas air yang digunakan.
Fosfor trioksida, P4O6, adalah oksida molekular, dan struktur tetrahedralnya dihasilkan dari
penghilangan atom oksigen terminal dari fosfor pentoksida. Masing-masing fosfor berkoordinasi
3. Senyawa ini dihasilkan bila fosfor putih dioksidasi pada suhu rendah dengan oksigen terbatas.
79
Oksida dengan komposisi di antara fosfor pentoksida dan trioksida memiliki 3 sampai 1 atom
oksigen terminal dan strukturnya telah dianalisis.
Walaupun arsen dan antimon menghasilkan oksida molekular As4O6 dan Sb4O6 yang memiliki
sruktur yang mirip dengan P4O6, bismut membentuk oksida polimerik dengan komposisi Bi2O3.
Asam okso fosfor
Asam fosfat, H3PO4. Asam fosfat adalah asam utama yang digunakan dalam industri kimia,
dihasilkan dengan hidrasi fosfor petoksida, P4O10. Asam fosfat komersial memiliki kemurnian 75-
85 %. Asam murninya adalah senyawa kristalin (mp. 42.35 °C). Satu atom oksigen terminal dan
tiga gugus OH diikat pada atom fosfor di pusat tetrahedral. Ketiga gugus OH dapat melepaskan
proton, membuat asam ini adalah asam berbasa tiga (pK1 = 2.15). Bila dua asam fosfat
berkondensasi dan melepaskan satu molekul air, dihasilkan asam pirofosfat, H4P2O7.
Asam fosfit, H3PO3, satu atom H mengganti gugus OH dalam asam fosfat. Karena masih ada
dua gugus OH, asam ini berbasa dua.
Asam hipofosfit, H3PO2, dua gugus OH asam fosfat diganti dengan atom H. Satu gugus OH
sisanya membuat asam ini berbasa satu. Bila tetrahedral PO4 dalam asam terikat dengan jembatan
O, berbagai asam fosfat terkondensasi akan dihasilkan. Adenosin trifosfat (ATP), asam
deoksiribo nukleat (DNA), dsb., yang mengandung lingkungan asam trifosfat digabungkan
dengan adenosin. Senyawa-senyawa ini sangat penting dalam sistem biologis.
f Belerang oksida
Belerang dioksida, SO2, dibentuk dengan pembakaran belerang atau senyawa belerang.
Belerang dioksida ini merupakan gas yang tidak bewarna dan merupakan gas beracun (bp -10.0
oC) dan merupakan gas emisi industri yang menyebabkan masalah lingkungan. Namun, pada saat
yang sama gas ini sangat penting karena merupakan sumber belerang. Belerang dioksida
merupakan senyawa bersudut, dan telah ditunjukkan sebagai ligan pada logam transisi akan
menghasilkan berbagai modus koordinasi. SO2 juga merupakan pelarut non-air mirip dengan
amonia, dan digunakan untuk reaksi khusus atau sebagai pelarut khusus dalam pengukuran NMR.
80
Belerang trioksida, dihasilkan dengan oksidasi katalitik belerang dioksida dan digunakan dalam
produksi asam sulfat. Reagen komersial SO3 biasa adalah cairan (bp 44.6 oC). Monomer fasa
gasnya adalah molekul planar. SO3 planar ini berkesetimbangan dengan trimer cincin (γ-SO3 =
S3O9) dalam fasa gas atau cairan. Dengan keberadaan kelumit air SO3 berubah menjadi β-SO3,
yakni polimer berkristalinitas tinggi dengan struktur heliks. α-SO3 juga dikenal dan merupakan
padatan dengan struktur lamelar yang lebih rumit lagi. Semuanya bereaksi dengan air dengan
hebat membentuk asam sulfat.
Asam-asam okso belerang
Walaupun dikenal banyak asam okso dari belerang, sebagian besar tidak stabil dan tidak dapat
diisolasi. Asam-asam okso ini dibentuk dengan kombinasi ikatan S=O, S-OH, S-O-S, dan S-S
dengan atom pusat belerang. Karena bilangan oksidasi belerang bervariasi cukup besar, di sini
terlibat berbagai kesetimbangan redoks.
Asam sulfat, H2SO4. Asam sulfat adalah senyawa dasar yang penting dan dihasilkan dalam
jumlah terbesar (ranking pertama dari segi jumlah) dari semua senyawa anorganik yang dihasilkan
industri. Asam sulfat murni adalah cairan kental (mp 10.37 oC), dan melarut dalam air dengan
menghasilkan sejumlah besar panas menghasilkan larutan asam kuat.
Asam tiosulfat, H2S2O3. Walaupun asam ini akan dihasilkan bila tiosulfat diasamkan, asam
bebasnya tidak stabil. Ion S2O3
2- dihasilkan dengan mengganti satu oksigen dari ion SO4
2- dengan
belerang, dan asam tiosulfat ini adalah reduktor sedang.
Asam sulfit, H2SO3. Garam sulfit sangat stabil namun asam bebasnya belum pernah diisolasi.
Ion SO3
2- memiliki simetri piramida dan merupakan reagen pereduksi. Dalam asam ditionat,
H2S2O6, ion ditionat, S2O6
2-, bilangan oksidasi belerang adalah +5, dan terbentuk ikatan S-S.
Senyawa ditionat adalah bahan pereduksi yang sangat kuat.
g Oksida Logam
Oksida dari semua unsur logam telah dikenal dan oksida-oksida ini menunjukkan beragam
struktur, asam basa, dan hantaran. Oksida dapat membentuk rantai satu dimensi, lapisan dua
dimensi atau struktur 3-dimensi. Oksida logam dapat bersifat basa, amfoter atau asam bergantung
identitas logamnya. Lebih lanjut, rentang sifat fisik yang ditunjukkan juga sangat luas, dari isolator,
81
semikonduktor, konduktor bahkan superkonduktor. Komposisi oksida logam dapat
stoikiometrik sederhana, stoikiometrik tetapi tidak sederhana, atau kadang non-stoikiometrik.
Oleh karena itu, oksida logam lebih baik diklasifikasikan sesuai dengan sifatnya. Namun, karena
strukturlah yang memberikan infomasi paling bermanfaat untuk memahami sifat fisik dan
kimianya, oksida diklasifikasikan berdasarkan atas dimensi strukturnya (Tabel 4.4. dan Tabel 4.5).
Tabel 4.5 Berbagai oksida biner logam transisi.
m molekular, c chain (rantai), l lapisan, yang tidak bertanda 3-dimensi
Oksida molekular
Rutenium tetroksida, RuO4, (mp 25 °C, dan bp 40°C) dan osmium teroksida, OsO4 (mp 40 °C,
dan bp 130 °C) memiliki titik didih dan titik leleh rendah, dan strukturnya molekular. Kedua
senyawa ini dipreparasi dengan memanaskan serbuk logam dalam atmosfer oksigen pada sekitar
800 °C. Strukturnya adalah tetrahedral, keduanya melarut dalam pelarut organik dan juga agak
larut dalam air. OsO4 digunakan dalam kimia anorganik khususnya untuk preparasi cis-diol
dengan mengoksidasi ikatan rangkap C=C. Misalnya, sikloheksana diol dipreparasi dari
82
sikloheksena. Karena oksida-oksida ini sangat mudah menguap dan beracun, oksida-oksida ini
harus ditangani dengan sangat hati-hati.
Oksida satu dimensi berstruktur rantai
Merkuri oksida, HgO, adalah senyawa kristalin bewarna merah dan dibentuk bila merkuri nitrat
dipanaskan di udara. HgO memiliki struktur zigzag tak hingga. Kromium trioksida, CrO3, adalah
senyawa kristalin merah dengan titik leleh rendah (197 °C) dan strukturnya terdiri atas tetrahedra
CrO4 yang dihubungkan dalam satu dimensi. Keasaman dan daya oksidasi kromium trioksida
sangat tinggi. Kromium trioksida digunakan sebagai bahan oksidator dalam kimia organik.
Oksida berstruktur dua dimensi
Gambar 4.11 Struktur PbO.
Timah oksida tetragonal dan bewarna hitam kebiruan, SnO, dan oksida timbal merah, PbO,
berstruktur lapisan yang terdiri atas piramida bujur sangkar atom logam di puncaknya dan empat
atom oksigen di dasar piramida. Strukturnya mengandung atom di atas dan di bawah lapisan
oksigen secara bergantian dan paralel dengan lapisan oksigennya (Gambar 4.11 ). Molibdenum
trioksida, MoO3, dibuat dengan membakar logamnya dalam oksigen dan menunjukkan sifat
oksidator lemah dalam larutan basa dalam air. MoO3 berstruktur lamelar dua dimensi dengan
struktur yang terdiri atas rantai oktahedra MoO6 yang berbagi sisi dan saling berbagai sudut.
83
Gambar 4.12 Struktur Cs11O3
Oksida 3-dimensi
Oksida logam alkali, M2O (M adalah Li, Na, K, dan Rb), mempunyai struktur antifluorit (lihat
bagian 2.2 (e)), dan Cs2O berstruktur lamelar anti-CdCl2 (lihat bagian 4.5 (d)). M2O terbentuk
bersama dengan peroksida M2O2 bila logam alkali dibakar di udara, tetapi M2O menjadi produk
utama bila jumlah oksigennya kurang dari yang diperlukan secara stoikiometris. Atau, M2O
didapatkan dengan pirolisis M2O2 setelah oksidasi sempurna logam. Peroksida M2O2 (M adalah
Li, Na, K, Rb, dan Cs) dapat dianggap sebagai garam dari asam berbasa dua H2O2. Na2O2
digunakan di industri sebagai bahan pengelantang. Superoksida MO2 (M adalah K, Rb, dan Cs)
mengandung ion paramagnetik O2
-, dan distabilkan dengan kation logam alkali yang besar. Bila
ada kekurangan oksigen selama reaksi oksidasi logam alkali, sub-oksida seperti Rb9O2 atau Cs11O3
terbentuk. Sub-oksida ini menunjukkan sifat logam dan memiliki kilap yang menarik (Gambar
4.12). Beberapa oksida lain yang rasio logam alkali dan oksigennya bervariasi, seperti M2O3, juga
telah disintesis.
Oksida logam jenis MO
Kecuali BeO (yang berstruktur wurtzit), struktur dasar oksida logam golongan 2 MO adalah
garam dapur. Oksida logam ini didapatkan dari kalsinasi logam karbonatnya. Titik lelehnya
sangat tingggi dan semuanya menunjukkan sifat refraktori. Khususnya kalsium oksida, CaO,
dihasilkan dan digunakan dalam jumlah besar. Struktur dasar oksida logam MO (Ti, Zr, V, Mn,
Fe, Co, Ni, Eu, Th, dan U) juga garam dapur, tetapi oksida-oksida ini mempunyai struktur defek
84
dan rasio logam dan oksigennya tidak stoikiometrik. Misalnya FeO mempunyai komposisi FexO
(x = 0.89-0.96) pada 1000 oC. Ketidakseimbangan muatan dikompensasi dengan oksidasi parsial
Fe2+ menjadi Fe3+. NbO mempunyai struktur jenis garam dapur yang berdefek yakni hanya tiga
satuan NbO yang ada dalam satu sel satuan.
Oksida logam jenis MO2
Dioksida Sn, Pb, dan logam transisi tetravalen dengan jari-jari ion yang kecil berstruktur rutil
(Gambar 4.13), dan dioksida lantanoid dan aktinoid dengan jari-jari ion yang lebih besar
berstruktur fluorit.
Gambar 4.13 Struktur rutil.
Rutil merupakan satu dari tiga struktur TiO2, dan merupakan yang paling penting dalam produksi
pigmen putih. Rutil juga telah secara ekstensif dipelajari sebagai katalis untuk fotolisis air.
Sebagaimana diperlihatkan di Gambar 4.13, struktur rutil memiliki oktahedra TiO6 yang
dihubungkan dengan sisi-sisinya dan melalui penggunaan bersama sudut-sudutnya. Struktur rutil
juga dapat dianggap sebagai susunan hcp oksigen yang terdeformasi dengan separuh lubang
oktahedranya diisi atom titanium. Dalam struktur jenis rutil normal, jarak antara atom M yang
berdekatan dalam oktahedra yang berbagi sisi adalah sama, tetapi beberapa jenis oksida logam
berstruktur rutil yang menunjukkan sifat semikonduktor memiliki jarak M-M-M yang tidak sama.
CrO2, RuO2, OsO2 dan IrO2 menunjukkan jarak M-M yang sama dan memiliki sifat konduktor
logam.
85
Mangan dioksida, MnO2, cenderung memiliki sifat non-stoikiometrik bila dihasilkan dengan reaksi
mangan nitrat dan udara, walaupun reaksi mangan dengan oksigen memberikan hasil MnO2 yang
hampir stoikiometrik. Reaksi mangan dioksida dan asam khlorida berikut sangat bermanfaat
untuk menghasilkan khlorin di laboratorium:
MnO2 + 4 HCl → MnCl2 + Cl2 + 2 H2O
Zirkonium dioksida, ZrO2, memiliki titik leleh sangat tinggi (2700 °C), dan resisten pada asam dan
basa. Zirkonium oksida juga merupakan bahan yang keras dan digunakan untuk krusibel atau
bata tahan api. Namun, karena zirkonium oksida murni mengalami transisi fasa pada 1100 oC dan
2300 oC yang menghasilkan keretakan, maka digunakan larutan padat zirkonium oksida dan CaO
atau MgO untuk bahan tahan api. Larutan padat ini disebut zirkonia yang distabilkan.
Oksida M2O3
Struktur paling penting oksida berkomposisi ini adalah korundum (M = Al, Ga, Ti, V, Cr, Fe,
dan Rh). Dalam struktur korundum 2/3 lubang oktahedra dalam susunan hcp atom oksigen diisi
oleh M3+. Dari dua bentuk alumina, Al2O3, α alumina dan γ alumina, α alumina berstruktur
korundum dan sangat keras. α alumina tidak reaktif pada air maupun asam. Alumina merupakan
komponen utama perhiasan, seperti rubi dan safir. Lebih lanjut, berbagai keramik maju
(material porselain fungsional) menggunakan sifat α-alumina yang telah dikembangkan. Di pihak
lain, γ alumina mempunyai struktur spinel yang defek, dan alumina jenis ini mengadsorbsi air dan
larut dalam asam, dan inilah yang merupakan komponen dasar alumina yang diaktivasi. Alumina
ini banyak manfaatnya termasuk katalis, pendukung katalis, dan dalam kromatografi.
Oksida MO3
Renium oksida atau wolfram oksida merupakan senyawa penting dengan komposisi ini. Renium
trioksida adalah senyawa merah tua yang disintesis dari renium dan oksigen memiliki kilap logam
dan konduktivitas logam. ReO3 memiliki susunan tiga dimensi ReO6 oktahedra yang
menggunakan bersama sudut-sudutnya dan sangat teratur (Gambar 4.14).
86
Gambar 4.14 Struktur ReO3.
Tungsten trioksida, WO3, adalah satu-satunya oksida yang menunjukkan berbagai transisi fasa
dekat suhu kamar dan paling tidak ada tujuh polimorf yang dikenal. Polimorf-polimorf ini
memiliki struktur tiga dimensi jenis ReO3 tersusun atas oktahedra WO6 yang berbagai sudut. Bila
senyawa ini dipanaskan di vakum atau dengan tungsten serbuk terjadi reduksi dan berbagai oksida
dengan komposisi yang rumit (W18O49, W20O58, dsb.) dihasilkan. Oksida molibdenum yang mirip
juga dikenal dan oksida-oksida ini telah dianggap non-stoikiometrik sebelum A. Magneli
menemukan bahwa sebenarnya senyawa-senyawa ini stoikiometrik.
Oksida logam campuran
Spinel, MgAl2O4, memiliki struktur dengan Mg2+ menempati 1/8 lubang tetrahedral dan Al3+
menempati 1/2 lubang oktahedral dari susunan ccp atom oksigen (Gambar 4.15). Di antara
oksida dengan komposisi A2+B3+
2O4 ( A2+ adalah Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sn, dan B3+
adalah Al, Ga, In, Ti, V, Cr, Mn, Fe, Co, Ni, dan Rh), bila lubang tetrahedralnya diisi oleh A2+
dihasilkan spinel normal, bila diisi B3+ dihasilkanlah spinel inversi. Mineral spinel memiliki
struktur spinel normal, sementara MgFe2O4 dan Fe3O4 memiliki struktur inversi. Energi
penstabilan medan kristal (lihat bagian 6.2 (a)) berbeda bergantung apakah medan kristal atom
oksigen berbentuk oktahedral atau tetrahedral. Oleh karena itu, bila komponen logamnya adalah
logam transisi, perbedaan energinya merupakan faktor yang menentukan distribusi kation (apakah
spinel normal atau invers yang akan diadopsi).
87
Gambar 4.15 Struktur spinel.
Perovskit, CaTiO3, adalah oksida ABO3 (muatan netto A dan B menjadi 6+), dan memiliki
struktur dengan atom kalsium ada di pusat TiO3 yang berstruktur ReO3 (Gambar 4.16). Di antara
senyawa jenis ini, BaTiO3, biasa disebut barium titanat, khususnya sangat penting. Material
fungsional feroelektrik ini digunakan sebagai device resistans nonlinear (varistor).
Gambar 4.16 Struktur perovskit.
h Oksida unsur golongan 14
Walaupun GeO2 memiliki struktur rutil, ada juga polimorfisme struktur kuarsa β. Ada germanium
dengan berbagai struktur analog dengan silikat dan aluminosilikat. SnO2 berstruktur rutil. SnO2
digunakan sebagai elektrode transparan, katalis, dan banyak aplikasi lain. Pelapisan oksida timah
di permukaan gelas meningkatkan reflektivitas gelas. PbO2 berstruktur rutil. Timbal oksida
88
bersifat oksidator kuat dan digunakan dalam pembuatan bahan-bahan kimia, dan PbO2 terbentuk
pula di baterai timbal (aki).
i Asam isopoli, asam heteropoli, dan garam-garamnya
Terdapat banyak asam poliokso dan garam-garamnya dari Mo(VI) dan W (VI). Vanadium V (V),
V (IV), Nb (V), dan Ta (V) membentuk asam poliokso walaupun jumlahnya terbatas. Asam
poliokso adalah anion poli inti yang terbentuk dengan polimerisasi polihedra MO6 yang
menggunakan bersama sudut atau sisi. Poliokso yang hanya mengandung logam, oksigen, dan
hidrogen disebut asam isopoli dan yang mengandung berbagai unsur lain (P, Si, logam transisi,
dsb.) disebut asam heteropoli. Garam asam poli mengandung kation lawan seperti natrium atau
amonium sebagai ganti proton. Sejarah asam poliokso dimulai dari J. Berzelius saat menemukan
asam poliokso di tahun 1826, yakni pembentukan endapan kuning ketika ia mengasamkan larutan
yang mengandung Mo(VI) dan P(V). Struktur asam poliokso kini telah dianalisis dengan analisis
struktural kristal tunggal dengan sinar-X, NMR 17O, dsb. Sebab kegunaannya yang luas di katalis
dalam industri atau untuk penggunaan lain, asam poliokso kini telah dipelajari dengan detail.
Struktur Keggin. Anion heteropoliokso diungkapkan dengan rumus umum [Xn+M12O40](8-n)-(M
= Mo, W, dan X = B, Al, Si, Ge, P, As, Ti, Mn, Fe, Co, Cu, dsb.) memiliki struktur Keggin, yang
dielusidasi oleh J. F. Keggin tahun 1934 dengan menggunakan difraksi sinar-X serbuk. Misalnya
struktur ion tungstat yang mengandung silikon, dengan 12 oktahedra WO6 melingkungi tetrahedra
SiO4 dan empat kelompok oktahedra yang menggunakan bersama sisinya berhubungan satu sama
lain dengan menggunakan bersama sudutnya, diperlihatkan di Gambar 4.17. Keempat atom
oksigen yang berkoordinasi dengan atom silikon dalam tetrahedra SiO4 juga menggunakan
bersama tiga oktahedra WO6. Oleh karena itu, struktur keseluruhannya bersimetri Td. Walaupun
struktur Keggin agak rumit, struktur ini sangat simetris dan cantik dan merupakan struktur paling
khas anion okso heteropoli. Berbagai tipe anion heteropoli lain juga dikenal.
89
Gambar 4.17 Struktur Keggin.
Anion poliokso dihasilkan dengan kondensasi satuan MO6 dengan penghilangan H2O bila MoO4
2-
bereaksi dengan suatu proton H+, sebagaimana diperlihatkan dalam reaksi:
12 [MoO4]2- + HPO4
2- → [PMo12O40]3- + 12 H2O (dalam suasana asam)
Oleh karena itu, ukuran dan bentuk anion heteropoliokso dalam endapan kristal ditentukan oleh
pilihan asam, konsentrasi, suhu atau kation lawan kristalisasi. Sejumlah studi kimia larutan anion
yang terlarut telah dilakukan.
Anion heteropoliokso menunjukkan sifat-sifat oksidasi yang penting. Bila anion heteropoliokso
mengandung ion logam berbilangan oksidasi tertinggi, anion tersebut akan tereduksi bahkan oleh
bahan pereduksi sangat lemah dan menunjukkan valensi campuran. Bila anion Keggin direduksi
dengan satu elektron, anion tersebut akan menunjukkan warna biru sangat tua. Ini menunjukkan
bahwa struktur Keggin dipertahankan pada tahap ini dan anion poliokso mengabsorbsi elektron
lagi dan beberapa ion M(V) dihasilkan. Jadi, anion heteropoliokso dapat digunakan sebagai
tempat pembuangan elektron bagi yang kelebihan elektron, dan anion heteropoliokso
menunjukkan reaksi foto-redoks.
Latihan 4.4. Apakah perbedaan utama struktur asam poli dan asam padat?
[Jawab] Walaupun asam poli adalah molekul dengan massa molekul tertentu, oksida padat biasa
memiliki tak hingga banyaknya ikatan logam-oksigen.
90
4.4 Khalkogen dan khalkogenida
a Unsu khalkogen
Belerang, selenium, dan telurium merupakan khalkogen. Unsur dan senyawa oksigen unsur-unsur
golongan ini di periode yang lebih besar memiliki sifat yang berbeda. Akibat dari sifat
keelektronegativannya yang lebih rendah dari keelektronegativan oksigen, senyawa-senyawa ini
menunjukkan derajat ion yang lebih rendah dan kenaikan derajat kekovalenan ikatan, dan
akibatnya derajat ikatan hidrogennya menjadi lebih kecil. Sebab orbital d kini telah ada, khalkogen
memiliki fleksibilitas valensi yang lebih besar dan dapat dengan mudah terikat ke lebih dari dua
atom lain. Katenasi adalah ikatan antara atom khalkogen yang sama dan baik zat sederhana
maupun ion khalkogen memiliki berbagai struktur.
Isotop utama belerang adalah 32S (kelimpahan 95.02%), 33S (0.75%), 34S (4.21% dan 36S(0.02%) ,
dan terdapat juga enam isotop radioaktif. Di antara isotop-isotop ini, 33S (I=3/2) digunakan untuk
NMR. Karena rasio isotop belerang dari berbagai lokasi berbeda, keakuratan massa atom terbatas
pada 32.07± 0.01. Karena kelektronegativan belerang (χ = 2.58) lebih kecil dari oksigen (χ =
3.44) dan belerang adalah unsur yang lunak, derajat ion ikatan senyawa belerang rendah dan ikatan
hidrogen senyawa belerang tidak terlalu besar. Unsur belerang memiliki banyak alotrop, seperti S2,
S3, S6, S7, S8, S9, S10, S11, S12, S18, S20, dan S∞, yang mencerminkan kemampuan katenasi atom
belerang.
Unsur belerang biasanya adalah padatan kuning dengan titik leleh 112.8 °C disebut dengan
belerang ortorombik (belerang α). Transisi fasa polimorf ini menghasilkan belerang monoklin
(belerang β) pada suhu 95.5 °C. Telah ditentukan pada tahun 1935 bahwa belerang-belerang ini
mengandung molekul siklik berbentuk mahkota (Gambar 4.18). Karena bentuknya molekular,
belerang larut dalam CS2. Tidak hanya cincin yang beranggotakan 8 tetapi cincin dengan anggota
6-20 juga dikenal, dan polimer belerang heliks adalah belerang bundar yang tak hingga. Molekul
S2 dan S3 ada dalam fasa gas. Bila belerang dipanaskan, belerang akan mencair dan saat
didinginkan menjadi makromolekul seperti karet. Keragaman struktur belerang terkatenasi juga
terlihat dalam struktur kation atau anion poli belerang yang dihasilkan dari reaksi redoks spesi yang
terkatenasi.
91
Gambar 4.18 Struktur S52-, S8, dan S82+.
Selenium dipercaya memiliki enam isotop. 80Se (49.7%) adalah yang paling melimpah dan 77Se,
dengan spin I = 1/2 sangat bermanafaat dalam NMR. Keakuratan massa atom selenium,
78.96±0.03, terbatas pada tempat dua desimal karena perubahan komposisi isotopnya. Di antara
berbagai alotrop selenium, yang disebut dengan selenium merah adalah molekul Se8 dengan
struktur mirip mahkota dan melarut dalam CS2. Selenium abu-abu metalik berstruktur polimer
heliks. Selenium hitam, dengan struktur polimer yang rumit, juga melimpah.
Telurium juga memiliki 8 isotop stabil dan massa atomnya 127.60+0.03. 130Te (33.8%) dan 128Te
(31.7%) adalah isotop yang paling melimpah, dan 125Te dan 123Te dengan I = 1/2 digunakan dalam
NMR. Hanya ada satu bentuk kristalin telurium, yang berbentuk polimer rantai spiral yang
menunjukkan sifat konduktivitas listrik.
b Kation dan anion poliatom khalkogen
Telah lama dikenali larutan unsur khalkogen dalam asam sulfat menunjukkan warna biru, merah
dan kuning yang cantik, kini spesi polikation yang memberikan warna ini, S4
2+, S6
4+, S4
2+, S8
2+, S10
2+,
S19
2+ atau spesi atom-atom khalkogen lain, telah diisolasi dengan reaksi dengan AsF5, dsb. dan
strukturnya telah ditentukan. Misalnya, tidak seperti S8 yang netral, S8
2+ mempunyai struktur siklik
dan memiliki interaksi kopling lemah antara dua atom belerang trans anular (Gambar 4.18).
Di pihak lain, garam logam alkali Na2S2, K2S5, dan garam logam alkali tanah BaS3, garam logam
transisi [Mo2(S2)6]2-, kompleks anion polisulfida Sx
2- (x =1-6) Cp2W(S4), dsb dengan atom belerang
saling terikat telah disintesis dan strukturnya telah ditentukan. Sebagaimana telah jelas belerang
membentuk molekul S8, belerang tidak seperti oksigen, cenderung membentuk katenasi. Oleh
karena itu pembentukan ion polisulfida, dengan banyak atom belerang terikat, mungkin terjadi,
dan berbagai polisulfan H2Sx (x=2-8) telah disintesis.
92
c Sulfida logam
Disulfida berlapis, MS2, adalah logam transisi sulfida yang penting. Logam sulfida ini
menunjukkan dua jenis struktur. Yang pertama memiliki lingkungan logam dalam kordinasi
prisma segitiga dan yang lain ion logamnya dalam koordinasi oktahedral.
MoS2 adalah senyawa molibdenum sulfida yang paling stabil bewarna hitam. L. Pauling
menentukan struktur MoS2 pada tahun 1923. Strukturnya dibangun oleh lapisan dua lapisan
belerang dan di antaranya ada lapisan molibdenum yang terinterkalasi (Gambar 4.19). Atau, dua
lapisan belerang ditumpuk dan lapisan molibdenum dimasukkan diantaranya. Oleh karena itu,
lingkungan koordinasi setiap molibdenum adalah prisma segitiga atom belerang. Karena tidak ada
ikatan antara lapisan belerang, lapisan itu mudah menggelincir satu sama lain, menghasilkan efek
pelumas seperti grafit. MoS2 digunakan sebagai pelumas padat yang ditambahkan ke oli dan
digunakan sebagai katalis dalam reaksi hidrogenasi.
Gambar 4.19 Struktur MoS2.
ZrS2, TaS2, dsb memiliki struktur CdI2, yang memiliki atom logam dalam koordinasi oktahedral
yang terbangun oleh atom belerang.
Senyawa fasa Chevrel. Ada senyawa superkonduktor yang disebut dengan fasa Chevrel yang
merupakan contoh penting senyawa khalkogenida molibdenum dengan rumus umum MxMo6X8
93
(M = Pb, Sn, dan Cu; X = S, Se, dan Te), dan enam atom molibdenum membentuk kluster
oktahedral reguler dan delapan atom khalkogen menutup kedelapan muka kluster. Satuan kluster
ini dihubungkan secara 3-dimensi (Gambar 4.20). Karena struktur kluster atom molibdenum
mirip dengan kluster molibdenum dikhlorida, MoCl2 (=MO6Cl8)Cl2Cl4/2), kimia struktur senyawa
ini telah mendapat perhatian besar seperti juga sifat-sifat fisiknya.
Gambar 4.20 Struktur SnMo6S8.
4.5 Halogen dan halida
Asal kata halogen adalah bahasa Yunani yang berarti produksi garam dengan reaksi langsung
dengan logam. Karena kereaktifannya yang sangat tinggi, halogen ditemukan di alam hanya dalam
bentuk senyawa. Sifat dasar ditunjukkan dalam Tabel 4.6 dan Tabel 4.7. Konfigurasi elektron
halogen adalah ns2np5, dan halogen kekurangan satu elektron untuk membentuk struktur gas mulia
yang merupakan kulit tertutup. Jadi atom halogen mengeluarkan energi bila menangkap satu
elektron. Jadi, perubahan entalpi reaksi X(g) + e → X-(g) bernilai negatif. Walaupun afinitas
elektron didefinisikan sebagai perubahan energi penangkapan elektron, tanda positif biasanya
digunakan. Agar konsisten dengan perubahan entalpi, sebenarnya tanda negatif yang lebih tepat.
94
Tabel 4.6 Sifat halogen
Tabel 4.7 Sifat molekul halogen
Afiinitas elektron khlorin (348.5 kJmol-1) adalah yang terbesar dan fluorin (332.6 kJmol-1) nilainya
terletak di antara afinitas elektron khlorin dan bromin (324.7 kJmol-1). Keelektronegativan fluorin
adalah yang tertinggi dari semua halogen.
Karena halogen dihasilkan sebagai garam logam, unsurnya dihasilkan dengan elektrolisis. Fluorin
hanya berbilangan oksidasi -1 dalam senyawanya, walaupun bilangan oksidasi halogen lain dapat
bervariasi dari -1 ke +7. Astatin, At, tidak memiliki nuklida stabil dan sangat sedikit sifat kimianya
yang diketahui.
a Produksi halogen
Fluorin memiliki potensial reduksi tertinggi (E = +2.87 V) dan kekuatan oksidasi tertinggi di
anatara molekul halogen. Flourin juga merupakan unsur non logam yang paling reaktif. Karena
air akan dioksidasi oleh F2 pada potensial yang jauh lebih rendah (+1.23 V) gas flourin tidak dapat
dihasilkan dengan elektrolisis larutan dalam air senyawa flourin. Karena itu, diperlukan waktu
95
yang panjang sebelum unsur flourin dapat diisolasi, dan F. F. H. Moisson akhirnya dapat
mengisolasinya dengan elektrolisis KF dalam HF cair. Sampai kini flourin masih dihasilkan
dengan reaksi ini.
Khlorin, yang sangat penting dalam industri kimia anorganik, dihasilkan bersama dengan natrium
hidroksida. Reaksi dasar untuk produksi khlorin adalah elektrolisis larutan NaCl dalam air dengan
proses pertukaran ion. Dalam proses ini gas khlorin dihasilkan dalam sel di anoda dan Na+
bergerak ke katoda bertemu dengan OH- membentuk NaOH.
Latihan 4.5 Mengapa khlorin dapat dihasilkan dengan elektrolisis larutan NaCl dalam air?
[Jawab] Walaupun potensial reduksi khlorin lebih tinggi (+1.36 V) dari oksigen (+1.23 V),
potensial reduksi oksigen dapat dinaikkan (potensial lebih =overvoltage) bergantung pada pemilihan
elektroda yang digunakan dalam proses elektrolisis.
Bromin didapatkan dengan oksidasi Br- dengan gas khlorin dalam air garam. Mirip dengan itu,
iodin dihasilkan dengan melewatkan gas khlorin melalui air garam yang mengandung ion I-.
Karena gas alam yang didapatkan di Jepang ada bersama di bawah tanah dengan air garam yang
mengandung I-, Jepang adalah negara utama penghasil iodin.
Anomali fluorin.
Fluorin molekular memiliki titik didih yang sangat rendah. Hal ini karena kesukaran polarisasinya
akibat elektronnya ditarik dengan kuat ke inti atom fluorin. Karena keelektronegativan fluorin
sangat besar (χ=3.98) dan elektron bergeser ke F, keasaman yang tinggi akan dihasilkan pada
atom yang terikat pada F. Karena jari-jari ionik F- yang kecil, bilangan oksidasi yang tinggi
distabilkan, dan oleh karena itu senyawa dengan bilangan oksidasi rendah seperti CuF tidak
dikenal, tidak seperti senyawa seperti IF7 dan PtF6.
Pseudohalogen Karena ion sianida CN-, ion azida N3- dan ion tiosianat, SCN-, dsb. membentuk
senyawa yang mirip dengan yang dibentuk ion halida, ion-ion tersebut disebut dengan ion
pseudohalida. Ion pseudohalida membentuk molekul pseudohalogen seperti sianogen (CN)2,
hidrogen sianda HCN, natrium tiosianat NaSCN, dsb. Pengubahan kecil efek sterik dan
elektronik yang tidak mungkin dilakukan hanya dengan ion halida membuat pseudohalogen sangat
bermanfaat dalam kimia kompleks logam transisi.
96
Polihalogen. Selain molekul halogen biasa, molekul polihalogen dan halogen campuran seperti
BrCl, IBr, ICl, ClF3, BrF5, IF7 dsb juga ada. Anion dan kation polihalogen seperti I3
-, I5
-, I3
+, dan
I5
+, juga dikenal.
b Senyawa oksigen
Walaupun dikenal banyak oksida biner halogen (terdiri hanya atas halogen dan oksigen), sebagian
besar senyawa ini tidak stabil. Oksigen difluorida OF2 merupakan senyawa oksida biner halogen
yang paling stabil. Senyawa ini adalah bahan fluorinasi yang sangat kuat dan dapat menghasilkan
plutonium heksafluorida PuF6 dari logam plutonium. Sementara oksigen khlorida, Cl2O,
digunakan untuk memutihkan pulp dan pemurnian air. Senyawa ini dihasilkan in situ dari ClO3
-,
karena tidak stabil.
Asam hipokhlorit, HClO, asam khlorit, HClO2, asam khlorat, HClO3, dan asam perkhlorat,
HClO4 adalah asam okso khlorin dan khususnya asam perkhlorat adalah bahan pengoksidasi kuat
sekaligus asam kuat. Walaupun asam dan ion analog dari halogen lain telah dikenal lama, BrO4
-
baru disintesis tahun 1968. Sekali telah disintesis ion ini tidak kurang stabil dibandingkan ClO4
-
atau IO4
-, menyebabkan orang heran mengapa tidak disintesis orang sebelumnya. Walaupun
ClO4
- sering digunakan untuk mengkristalkan kompleks logam transisi, bahan ini eksplosif dan
harus ditangani dengan hati-hati.
c Halida non logam
Halida hampir semua non logam telah dikenal, termasuk fluorida bahkan dari gas mulia kripton,
Kr, dan xenon, Xe. Walaupun fluorida menarik karena sifat uniknya sendiri, halida biasanya
sangat penting sebagai reaktan untuk berbagai senyawa non logam dengan mengganti halogen
dalam sintesis anorganik (Tabel 4.8).
97
Tabel 4.8 Khlorida dan flourida khas non logam.
Boron trifluorida, BF3, adalah gas tak bewarna (mp -127 oC dan bp -100 oC) yang memiliki bau
mengiritasi dan beracun. Boron triflourida digunakan sebagai katalis untuk reaksi jenis Friedel-
Crafts. BF3 juga digunakan sebagai katalis untuk polimerisasi kationik. BF3 berada di fasa gas
sebagai molekul monomer triangular dan membentuk aduk (aduct ikatan koordinasi) dengan basa
Lewis amonia, amina, eter, fosfin, dsb. sebab sifat asam Lewisnya yang kuat. Aduk dietileter,
(C2H5)2O:BF3, adalah cairan yang dapat didistilasi dan digunakan sebagai reagen biasa. Aduk ini
merupakan reaktan untuk preparasi diboran, B2H6. Tetrafluoroborat, BF4
-, adalah anion
tetrahedral yang dibentuk sebagai aduk BF3 dengan garam logam alkali, garam perak dan NOBF4
serta asam bebas HBF4 mengandung anion ini. Karena kemampuan koodinasinya lemah, anion
ini digunakan untuk kristalisasi kompleks kation logam transisi sebagai ion lawan seperti ClO4
-.
AgBF4 dan NOBF4 juga bermanfaat sebagai bahan pengoksidasi 1-e kompleks.
Tetrakhlorosilan, SiCl4, adalah cairan tak bewarna (mp -70 oC dan bp 57.6 oC). Senyawa ini
berupa molekul tetrahedral reguler, dan bereaksi secara hebat dengan air membentuk asam silisik
dan asam khlorida. Senyawa ini sangat bermanfaat sebagai bahan baku produksi silikon murni,
senyawa silikon organik dan silikone (silicone).
Fosfor trifluorida, PF3, adalah gas tak bewarna, tak berbau, dan sangat beracun (mp -151.5 oC
dan bp -101.8 oC). Molekulnya berbentuk piramida segitiga. Karena senyawa ini penarik elektron
seperti CO, PF3 dapat menjadi ligan dan membentuk kompleks logam yang analog dengan
kompleks logam karbonil.
98
Fosfor pentakhlorida, PCl5, adalah zat kristalin tak bewarna (tersublimasi tetapi terdekomposisi
pada 160 °C). Molekulnya berbentuk trigonal bipiramid dalam wujud gas, tetapi dalam kristal
berupa pasangan ion [PCl4]+[PCl6]- pada fasa padat. Walaupun senyawa ini bereaksi hebat dengan
air dan menjadi asam fosfat dan asam khlorida, PCl5 larut dan CS2 dan CCl4. PCl5 sangat
bermanfaat untuk khlorinasi senyawa organik.
Arsen pentafluorida, AsF5, adalah gas tak bewarna (mp -79.8 °C dan bp -52.9 °C). Molekulnya
adalah trigonal bipiramida. Walaupun senyawa ini terhidrolisis, senyawa ini larut dalam pelarut
organik. AsF5 adalah penangkap elektron yang kuat, senyawa ini dapat membentuk kompleks
donor-akseptor dengan donor elektron.
Belerang heksafluorida, SF6, adalah gas tak bewarna dan tak berbau (mp. -50.8 °C dan titik
sublimasi -63.8 °C). Molekulnya berbentuk oktahedral. SF6 secara kimia tidak stabil dan sukar
larut dalam air. Karena SF6 memiliki sifat penahan panas yang istimewa, tidak mudah terbakar
dan tahan korosi, SF6 digunakan sebagai insulator tegangan tinggi.
Belerang khlorida, S2Cl2, adalah cairan bewarna oranye (mp -80 °C dan bp 138 °C). Mempunyai
struktur yang sama dengan hidrogen peroksida. Mudah larut dalam pelarut organik. S2Cl2 sebagai
senyawa anorganik industri, digunakan dalam skala besar untuk vulkanisasi karet, dsb.
d Halida logam
Banyak logam halida dibentuk oleh kombinasi 80 unsur logam dan empat halogen (Tabel 4.8,
Tabel 4.9). Karena terdapat lebih dari satu bilangan oksidasi khususnya logam transisi, dikenal
beberapa jenis halida logam transisi. Halida ini sangat penting sebagai bahan awal preparasi
senyawa logam, dan kimia anorganik senyawa logam bergantung pada halida logam. Ada halida
rantai 1-dimensi, lapisan 2-dimensi, dan 3-dimensi, tetapi beberapa di antaranya adalah padatan
kristalin molekular. Penting dicatat halida logam transisi anhidrat biasanya senyawa padat dan
hidratnya adalah senyawa koordinasi dengan ligan air. Karena kedimensionalan struktur adalah
merupakan aspek paling menarik dalam struktur dan sintesis, halida khas dideskripsikan dengan
urutan dimensinya.
99
Tabel 4.9 Fluorida dan Khlorida khas logam transisi.
Halida molekular
Merkuri(II) khlorida, HgCl2. HgCl2 adalah kristal tak bewarna larut dalam air dan etanol. HgCl2
adalah molekul lurus triatomik dalam fasa bebasnya. Namun, selain dua atom khlorin, empat
khlorin dari molekul di dekatnya menempati koordinasi dan merkuri menjadi heksakoordinat
dalam keadaan kristalin. Senyawa ini sangat toksik dan digunakan untuk mengawetkan kayu, dsb.
Aluminum trikhlorida, AlCl3. Kristal tak bewarna (mp 190 oC (2.5 atm) dan bp. 183 oC) yang
tersublimasi bila dipanaskan. AlCl3 melarut dalam etanol dan eter. AlCl3 adalah asam Lewis dan
membentuk aduk dengan berbagai basa. AlCl3 dalam cairan dan gas terdiri atas molekul yang
berupa dimer aluminum tetrakoordinasi dengan jembatan khlorin (Gambar 4.21), dan berstruktur
lamelar bila kristalin. AlCl3 digunakan dalam katalis asam Lewis Friedel Craft, dsb.
100
Gambar 4.21 Struktur aluminum khlorida.
Timah (IV) khlorida, cairan tak bewarna (mp -33 oC dan bp 114 oC). Dalam fasa gas berupa
molekul tetrahedral.
Titanium (IV) khlorida, TiCl4. Cairan tak bewarna (mp -25 oC dan bp 136.4 oC). Molekul
gasnya adalah tetrahedral mirip timah(IV) khlorida. TiCl4 digunakan sebagai komponen katalis
Ziegler Natta.
Halida mirip rantai
Emas iodida, padatan putih kekuningan. Dua atom iod berkoordinasi pada atom emas dan
senyawanya mempunyai struktur rantai 1 dimensi zig zag .
Berilium khlorida, BeCl2. Kristal tak bewarna (mp 405 oC dan bp 520 oC). Menyerap air dan
larut dalam air dan etanol. Berilium tetrakoordinat membentuk rantai 1 dimensi melalui jembatan
khlorin (Gambar 4.22). Dalam fasa gas, merupakan molekul berbentuk lurus berkoordinasi dua.
BeCl2 adalah asam Lewis dan digunakan sebagai katalis reaksi Friedel-Crafts.
Gambar 4.22 Struktur berilium khlorida.
101
Paladium khlorida, PdCl2 adalah padatan merah. Dalam tipe α, atom paladium yang
berkoordinasi empat membentuk rantai 1-dimensi dengan jembatan ganda khlorin. Dihidratnya
menyerap air dan larut dalam air, etanol, aseton, dsb. Bila PdCl2 dilarutkan dalam asam khlorida,
akan terbentuk [PdCl4]2- berkoordinasi empat bujur sangkar. PdCl2 digunakan dalam katalis proses
Wacker, yang merupakan proses oksidasi olefin, juga sebagai katalis dalam berbagai reaksi organik.
Zirkonium(IV) tetrakhlorida, ZrCl4. Kristal tak bewarna (tersublimasi di atas 331 oC).
Zirkonium berkoordinasi oktahedral dan membentuk rantai zig zag jembatan melalui jembatan
khlorin (Gambar 4.23). Senyawa ini bersifat higroskopik dan larut dalam air, etanol, dsb. ZrCl4
digunakan sebagai katalis Friedel-Crafts dan sebagai komponen katalis polimerisasi olefin.
Gambar 4.23 struktur zirkonium (IV) khlorida.
Halida berlapis
Kadmium iodida, CdI2. kristal tak berwarna (mp 388 oC dan bp 787°C). CdI2 mempunyai
struktur CdI2 dengan lapisan yang terdiri atas oktahedral CdI6 menggunakan bersama sisinya
(Gambar 4.24). Dalam fasa gas, CdI2 membentuk molekul triatomik lurus. CdI2 larut dalam air,
etanol, aseton, dsb.
102
Gambar 4.24 Struktur CdI2.
Kobal(II) khlorida, CoCl2. Kristal biru (mp 735 oC dan mp 1049 °C) memiliki struktur CdCl2.
CoCl2 bersifat higroskopik dan menjadi merah muda bila mengabsorbsi air. CoCl2 juga larut dalam
etanol dan aseton. Heksahidratnya bewarna merah dan merupakan senyawa koordinasi dengan air
merupakan ligan.
Besi (II)khlorida, FeCl2, kristal kuning kehijauan (mp 670-674 oC). Memiliki struktur kadmium
khlorida, dan larut dalam air dan etanol. Hidratnya, yang terkoordinasi dengan sejumlah air (6, 4,
2), diendapkan dari larutan FeCl2 dalam asam khlorida.
Besi(III)khlorida, FeCl3, kristal coklat tua (mp 306 oC dan menyublim). FeCl3 memiliki struktur
lamelar dengan besi berkoordinasi secara tetrahedral dengan enam ligan khlorin. Dalam fasa gas,
FeCl3 memiliki struktur dimer yang berjembatan khlorin mirip dengan aluminum khlorida.
Struktur 3-dimensi
Natrium khlorida, NaCl, padatan tak bewarna (mp 801 °C dan bp 1413 °C). NaCl memiliki
struktur garam dapur. Dalam fasa gas, NaCl adalah molekul dua atom. Walaupun larut dalam
gliserol maupun air, NaCl sukar larut dalam etanol. Kristal tunggal berukuran besar digunakan
sebagai prisma untuk spektrometer inframerah.
103
Cesium khlorida, CsCl. Padatan kristal tak bewarna (mp 645 °C, bp 1300 °C). Walaupun
memiliki struktur CsCl, CsCl akan berubah menjadi struktur NaCl pada 445 °C. Dalam fasa gas,
CsCl adalah molekul dwiatom.
Tembaga (I) khlorida, CuCl. Kristal tak bewarna (mp 430 °C dan bp 1490 °C), berstruktur ZnS
dan empat khlorin terkoordinasi dengan tembaga membentuk tetrahedral.
Kalsium khlorida, CaCl2. Kristal tak bewarna (mp 772 oC dan bp di atas 1600 oC). CaCl2
berstruktur rutil terdistorsi dan kalsium dikelilingi oleh enam khlorin dalam koordinasi oktahedral.
CaCl2 larut dalam air, etanol, dan aseton. CaCl2 menyerap air dan digunakan sebagai desikan.
Dikenal hidratnya dengan 1, 2, 4, atau 6 molekul air terkoordinasi.
Kalsium fluorida, CaF2. Kristal tak bewarna (mp 1418 oC dan bp 2500 oC), memiliki struktur
fluorit, merupakan bahan baku paling penting senyawa flourin. Kristal tunggal dengan kualitas
yang baik digunakan dalam prisma spektrometer dan lensa fotografi.
Kromium(II) khlorida, CrCl2. Kristal tak bewarna (mp 820 °C dan menyublim), berstruktur rutil
terdistorsi, melarut dengan baik di air menghasilkan larutan bewarna biru.
Kromium(III) khlorida , CrCl3. Kristal merah jingga (mp. 115 °C dan terdekomposisi pada 1300
°C). Ion Cr3+ menempati dua pertiga lubang oktahedral secara bergantian dalam lapisan hvp Cl-.
CrCl3 tidak larut dalam air, etanol dan aseton.
Latihan 4.6 Mengapa padatan halida logam melarut dalam air?
[Jawab] Sebab padatan itu bereaksi dengan air, ion halidanya menjadi terkoordinasi dengan
molekul air.
4.6 Gas mulia dan senyawanya
a Gas mulia
Di abad ke-18, H. Cavendish menemukan komponen yang inert di udara. Di tahun 1868, suatu
garis di spektrum sinar matahari yang tidak dapat diidentifikasi ditemukan dan disarankan garis
tersebut disebabkan oleh unsur baru, helium. Berdasarkan fakta ini, di akhir abad ke-19 W.
Ramsay mengisolasi He, Ne, Ar, Kr, dan Xe dan dengan mempelajari sifat-sifatnya ia dapat
104
menunjukkan bahwa gas-gas tersebut adalah unsur baru. Walaupun argon berkelimpahan hampir
1% di udara, unsur ini belum diisolasi hingga Ramsay mengisolasinya dan gas mulia sama sekali
tidak ada dalam tabel periodiknya Mendeleev. Hadiah Nobel dianugerahkan pada Ramsay tahun
1904 atas keberhasilannya ini.
Gas mulia ditemukan di dekat golongan halogen dalam tabel periodik. Karena unsur gas mulia
memiliki konfigurasi elektron yang penuh, unsur-unsur tersebut tidak reaktif dan senyawanya tidak
dikenal. Akibatnya gas-gas ini dikenal dengan gas inert. Namun, setelah penemuan senyawa gasgas
ini, lebih tepat untuk menyebutnya dengan unsur gas mulia, seperti yang digunakan di sini.
Walaupun kelimpahan helium di alam dekat dengan kelimpahan hidrogen, helium sangat jarang
dijumpai di bumi karena lebih ringan dari udara. Helium berasal dari reaksi inti di matahari dan
telindung di bawah kerak bumi. Helium diekstraksi sebagai hasil samping gas alam dari daerahdaerah
khusus (khususnya Amerika Utara). Karena titik leleh helium adalah yang terendah dari
semua zat (4.2 K), helium sangat penting dalam sains suhu rendah dan superkonduktor. Lebih
lanjut, karena ringan helium digunakan dalam balon udara, dsb. Karena argon didapatkan dalam
jumlah besar ketika nitrogen dan oksigen dipisahkan dari udara, argon digunakan meluas dalam
metalurgi, dan industri serta laboratorium yang memerlukan lingkungan bebas oksigen.
b Senyawa gas mulia
Xenon, Xe, bereaksi dengan unsur yang paling elektronegatif, misalnya fluorin, oksigen, dan
khlorin dan dengan senyawa yang mengandung unsur-unsur ini, misalnya platinum fluorida, PtF6.
Walaupun senyawa xenon pertama dilaporkan tahun 1962 sebagai XePtF6, penemunya N.
Bartlett, kemudian mengoreksinya sebagai campuran senyawa Xe[PtF6]x (x= 1-2). Bila campuran
senyawa ini dicampurkan dengan gas fluorin dan diberi panas atau cahaya, flourida XeF2, XeF4,
dan XeF6 akan dihasilkan. XeF2 berstruktur bengkok, XeF4 bujur sangkar, dan XeF6 oktahedral
terdistorsi. Walaupun preparasi senyawa ini cukup sederhana, namun sukar untuk mengisolasi
senyawa murninya, khususnya XeF4.
Hidrolisis fluorida-fluorida ini akan membentuk oksida. XeO3 adalah senyawa yang sangat
eksplosif. Walaupun XeO3 stabil dalam larutan, larutannya adalah oksidator sangat kuat.
Tetroksida XeO4, adalah senyawa xenon yang paling mudah menguap. M[XeF8] (M adalah Rb
dan Cs) sangat stabil tidak terdekomposisi bahkan dipanaskan hingga 400 oC sekalipun. Jadi,
105
xenon membentuk senyawa dengan valensi dua sampai delapan. Fluorida-fluorida ini digunakan
juga sebagai bahan fluorinasi.
Walaupun kripton dan radon diketahui juga membentuk senyawa, senyawa kripton dan radon
jarang dipelajari karena ketidakstabilannya dan sifat radioaktifnya yang membuat penanganannya
sukar.
Penemuan gas mulia
H. Bartlett mempelajari sifat platina fluorida PtF6 tahun 1960-an, dan mensintesis
O2PtF6. Penemuan ini sangat fenomenal dalam kimia anorganik karena percobaan
dengan yang analog dengan xenon, yang memiliki energi ionisasi (1170 kJmol-1)
cukup dekat dengan energi ionisasi O2 (1180 kJmol-1), menghasilkan penemuan
dramatis, yakni senyawa XePtF6.
Senyawa gas mulia belum pernah dipreparasi sebelum laporan ini, walaupun
berbagai usaha telah dilakukan demikian gas mulia ditemukan. W. Ramsay
mengisolasi gas mulia dan menambahkan golongan baru dalam tabel periodik di
akhir abad ke-19. Di tahun 1894, F. F. H. Moisson, yang terkenal dengan isolasi F2,
mereaksikan 100 cm3 argon yang diberikan oleh Ramsay dengan gas fluorin dengan
menggunakan loncatan listrik tetapi gagal mempreparasi argon fluorida. Di awal
abad ini, A. von Antoropoff melaporkan sintesis senyawa kripton KrCl2, tetapi
belakangan diketahui ia melakukan kesalahan.
L. Pauling telah meramalkan keberadaan KrF6, XeF6, dan H4XeO6, dan
mengantisipasi sintesisnya. Di tahun 1932, seorang fellow riset, A. L. Kaye, di
laboratoriumnya D. M. L. Yost di Caltech, tempat Pauling juga bekerja, berusaha
mempreparasi senyawa gas mulia. Walaupun preparasi yang dilakukannya rumit dan
penuh semangat, usaha untuk mempreparasi senyawa xenon dengan mengalirkan
arus lucutan melalui campuran gas xenon, fluorin, atau khlorin tidak berhasil.
Pauling, dikabarkan setelah kegagalan itu, tidak berminat lagi dalam studi senyawa
gas mulia.
Walaupun R. Hoppe dari Jerman memprediksikan dengan pertimbangan teoritik
bahwa senyawa XeF2 dan XeF4 bakal ada, jauh sebelum penemuan Bartlett, ia
sendiri melakukan sintesis setelah mengetahui penemuan Bartlett. Sekali suatu
senyawa jenis tertentu telah dipreparasi, senyawa analognya dipreparasi satu demi
satu. Ini juga umum dalam kimia sintetik di masa-masa selanjutnya, dan sekali lagi
ini menunjukkan pentingnya penemuan pertama.
Soal
4.1 Tuliskan persamaan setimbang preparasi diboran.
106
4.2 Tuliskan persamaan setimbang preparasi trietilfosfin.
4.3 Tuliskan persamaan setimbang preparasi osmium tetroksida.
4.4 Deskripsikan reaksi dasar metoda fosfomolibdat yang digunakan untuk mendeteksi ion fosfat.
4.5 Gambarkan struktur paladium dikhlorida anhidrat dan deskripsikan reaksinya bila dilarutkan
dalam asam khlorida.
4.6 Deskripsikan reaksi kobal dikhlorida anhidrat bila dilarutkan dalam air.
4.7 Gambarkan struktur fosor pentafluorida.

Tidak ada komentar:

Posting Komentar