Selamat Datang

Semoga blog ini dapat menambah wawasan dan pengetahuan untuk kita semua.

Sabtu, 12 Februari 2011

gas mulia

Gas Mulia

HELIUM
 Sejarah
(Yunani helios= matahari). Janssen menemukan bukti keberadaan helium pada saat gerhana matahari total tahun 1868 ketika dia mendeteksi sebuah garis baru di spektrum sinar matahari. Lockyer dan Frankland menyarankan pemberian nama helium untuk unsur baru tersebut. Pada tahun 1895, Ramsay menemukan helium di mineral cleveite uranium. Pada saat yang bersamaan kimiawan Swedia Cleve dan Langlet menemukan helium di cleveite. Rutherford dan Roys pada tahun 1907 menunjukkan bahwa partikel-partikel alpha tidak lain adalah nukleus helium.


 Sumber
Helium merupakan elemen kedua terbanyak di alam semesta. Helium diproses dari gas alam, karena banyak gas alam yang mengandung gas helium.
Secara spektroskopik helium telah dideteksi keberadaannya di bintang-bintang, terutama di bintang yang panas. Helium juga merupakan komponen penting dalam reaksi proton-proton dan siklus karbon yang memberikan bahan bakar matahari dan bintang-bintang lainnya.
Pemfusian hidrogen menjadi helium menghasilkan energi yang luar biasa dan merupakan proses yang dapat membuat matahari bersinar secara terus-menerus. Kadar helium di udara sekitar 1 dalam 200,000. Walau banyak terdapat dalam berbagai mineral radioaktif sebagai produk-produk radiasi, sebagian besar pasokan helium untuk Amerika Serikat terdapat di sumur-sumur minyak Texas, Oklahoma, dan Kansas. Di luar AS, pabrik ekstraksi helium hanya terdapat di Polandia, Rusia dan di India (data tahun 1984).

NEON
 Sejarah
Ditemukan oleh Ramsay dan Travers pada tahun 1898. Neon adalah unsur gas mulia yang terdapat atmosfer hingga 1:65000 udara. Neon diperoleh denganmencairkan udara dan melakukan pemisahan dari gas lain dengan penyulingan bertingkat

ARGON
 Sejarah
Keberadaan argon di udara sudah diduga oleh Cavendish pada tahun 1785, dan ditemukan oleh Lord Raleigh dan Sir William Ramsay pada tahun 1894.
Argon larut dalam air, 2.5 kali lipat daripada nitrogen, dan memiliki kelarutan yang sama dengan oksigen. Argon tidak berwarna dan tidak berbau, baik dalam bentuk gas dan cair. Argon dikenal sebagai gas inert dan tidak diketahui senyawa kimia yang dibentuknya seperti halnya krypton, xenon dan radon.

KRYPTON
Krypton ditemukan pada tahun 1898 oleh Ramsay dan Travers dalam residu yang tersisa setelah udara cair hampir menguap semua. Pada tahun 1960, disetujui secara internasional bahwa satuan dasar panjang, meter, harus didefinisikan sebagai garis spektrum merah oranye dari 86Kr. Hal ini untuk menggantikan standar meter di Paris, yang semula didefinisikan sebagai batangan alloy platina-iridium. Pada bulan Oktober 1983, satuan meter, yang semula diartikan sebagai satu per sepuluh juta dari kuadrat keliling kutub bumi, akhirnya didefinisi ulang oleh lembaga International bureau of Weights and Measures, sebagai panjang yang dilalui cahaya dalam kondisi vakum selama interval waktu 1/299,792,458 detik.

XENON

 Sejarah
Ditemukan pada tahun 1898 oleh Ramsay dan Travers dalam residu yang tersisa setelah menguapkan udara cair. Xenon adalah anggota gas mulia atau gas inert. Terdapat di atmosfer kita dengan kandungan satu bagian per dua puluh juta bagian atmosfer. Xenon terdapat dalam atmosfer Mars dengan kandungan 0.08 ppm. Unsur ini ditemukan dalam bentuk gas, yang dilepaskan dari mineral mata air tertentu, dan dihasilkan secara komersial dengan ekstraksi udara cair.

RADON
Radon adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang Rn dan nomor atom 86. Radon juga termasuk dalam kelompok gas mulia dan beradioaktif. Radon terbentuk dari penguraian radium. Radon juga gas yang paling berat dan berbahaya bagi kesehatan. Rn-222 mempunyai waktu paruh 3,8 hari dan digunakan dalam radioterapi. Radon dapat menyebabkan kanker paru paru, dan bertanggung jawab atas 20.000 kematian di Uni Eropa setiap tahunnya

Radon tidak mudah bereaksi secara kimia, tetapi beradioaktif, radon juga adalah gas alami (senyawa gas terberat adalah tungsten heksaflorida, WF6). Pada suhu dan tekanan ruang, radon tidak berwarna tetapi apabila didinginkan hingga membeku, radon akan berwarna kuning, sedang kan radon cair berwarna merah jingga.Penumpukan gas Radon secara alamiah di atsmosfir bumi terjadi amat perlahan sehingga air yang menyentuh udara bebas terus kehilangan Radon karena proses “Volatilisasi. Air bawah tanah mempunyai kandungan Radon lebih tinggi di bandingkan air permukaan.

Jenis ikatan yang terbentuk


Unsur-unsur gas mulia hampir tidak membentuk ikatan dengan atom lain dan karena tidak reaktifnya maka sering disebut gas inert. Unsur gas mulia sangat stabil karena atom-atom gas mulia tidak menerima electron ataupun melepaskan elektron terluarnya.

Pembentukan senyawa gas mulia

Sampai dengan tahun 1962, para ahli masih yakin bahwa unsur-unsur gas mulia tidak bereaksi. Kemudian seorang ahli kimia kanada bernama Neil Bartlet berhasil membuat persenyawaan yang stabil antara unsur gas mulia dan unsur lain, yaitu XePtF6.
Keberhasilan ini didasarkan pada reaksi:
PtF6 + O2 → (O2)+ (PtF6)-
PtF6 ini bersifat oksidator kuat. Molekul oksigen memiliki harga energi ionisasi 1165 kJ/mol, harga energi ionisasi ini mendekati harga energi ionisasi unsur gas mulia Xe = 1170 kJ/mol.
Atas dasar data tersebut, maka untuk pertama kalinya Bartlet mencoba mereaksikan Xe dengan PtF6 dan ternyata menghasilkan senyawa yang stabil sesuai dengan persamaan reaksi:
Xe + PtF6 → Xe+(PtF6)-
Setelah berhasil membentuk senyawa XePtF6, maka gugurlah anggapan bahwa gas mulia tidak dapat bereaksi. Kemudian para ahli lainnya mencoba melakukan penelitian dengan mereaksikan xenon dengan zat-zat oksidator kuat, diantaranya langsung dengan gas flourin dan menghasilkan senyawa XeF2, XeF4, dan XeF6. Reaksi gas mulia lainnya, yaitu krypton menghasilkan senyawa KrF2. Radon dapat bereaksi langsung dengan F2 dan menghasilkan RnF2. Hanya saja senyawa KrF2 dan RnF2 bersifat (tidak stabil).
Senyawa gas mulia He, Ne, dan Ar sampai saat ini belum dapat dibuat mungkin karena tingkat kestabilannya yang sangat besar.

 Kereaktifan gas mulia
Gas mulia dalam keadaan dasarnya memenuhi kondisi untuk kestabilan kimia (1) tidak memiliki elektron yang tidak berpasangan, (2) energi ionisasi sangat besar dan (3) afinitas elektronnya negatif dan dengan demikian kereaktifannya sangat rendah. Akan tetapi, beberapa reaksi dapat terjadi jika kondisinya sebagian tidak dipenuhi. Meskipun energi ionisasi untuk atom gas mulia besar, nilainya menurun dalam urutan sebagai berikut, He (24.6 eV), Ne (21.6 eV), Ar (15.8 eV), Kr (14.0 eV) dan ionisasi energi untuk Xe adalah 12.1 eV, yang lebih kecil dari energi ionisasi untuk atom hidrogen (13.6 eV). Hal ini memberikan indikasi bahwa kondisi tidak berlaku untuk Xe. Dengan mencatat kecenderungan ini, N. Bartlet melakukan sintesis XePtF6 dari Xe dan PtF6 pada tahun 1962 dan juga N. H. Clasen memperoleh XeF4 melalui reaksi termal antara Xe dan F2 pada tahun 1962. Selanjutnya, XeF2, XeF6, XeO3, XeO4 dan beberapa senyawa gas mulia lainnya telah berhasil disintesis dan mengakibatkan hipotesis bahwa gas mulia adalah gas yang tidak reaktif ditolak. Contohnya :

3Xe(g) + 6F2(g) ---> XeF2(s) + XeF4(s) + XeF6(s)

Setelah itu didapat tak kurang dari 200 jenis senyawa gas mulia. Awalnya kripton diduga tidak tidak bersenyawa dengan unsur lainnya, tapi sekarang sudah ditemukan beberapa senyawa kripton. Di alam, kripton memiliki enam isotop stabil. Dikenali juga 1 isotop lainnya yang tidak stabil. Garis spektrum kripton dapat dihasilkan dengan mudah dan beberapa di antaranya sangat tajam untuk bisa dibedakan. Awalnya kripton diduga tidak tidak bersenyawa dengan unsur lainnya, tapi sekarang sudah ditemukan beberapa senyawa kripton. Kripton difluorida sudah pernah dibuat dalam ukuran gram dan sekarang sudah dapat dibuat dengan beberapa metode. Senyawa fluorida lainnya dan garam dari asam oksi kripton pun telah dilaporkan. Ion molekul dari ArK+ dan KrH+ telah diidentifikasi dan diinvestigasi, demikian juga KrXe dan KrXe+ pun telah memiliki beberapa bukti.


 Syarat-syarat pembentukan senyawa gas mulia

1. Gas mulia keelektropositifannya besar (Kr, Xe).
2. Atom gas mulia yang mudah mengion (dan karenanya, berat).
3. Unsur lain yang akan bersenyawa dengan gas mulia keelektronegatifannya besar (F, O).


 Beberapa contoh senyawa gas mulia

Senyawa Biloks Xe Nama Hibridisasi Bentuk Molekul
XeF2 +2 Xenon di fluorida sp3d linier(garis lurus)
XeF4 +4 Xenon terafluorida sp3d2 Segiempat planar
XeF6 +6 Xenon heksafluorida sp3d3 Oktahedral terdistorsi
XeO3 +6 Xenon trioksida sp3d3 segitiga piramida
XeO4 +8 Xenon tetraoksida sp3d4 tetrahedral
XeOF4 +6 Xenon oksi tetrafluorida sp3d3 segiempat piramida



Dengan menggunakan teori VSEPR maka kita dapat meramalkan bentuk geometri bentuk molekul- molekul. Berikut ini dicontohkan bagaimana menentukan bentuk geometri molekul XeF2, dan XeF4. Diantara molekul-molekul tersebut ada yang memiliki pasangan elektron bebas dan ada yang tidak, jadi molekul-molekul tersebut adalah contoh yang bagus untuk lebih memahami teori VSEPR.
Pertama kita harus mementukan struktur lewis masing-masing molekul. Xe memiliki jumlah elektron valensi 8 sedangkan F elektron valensinya adalah 7.(lihat gambar dibawah)

Struktur Lewis XeF2 seperti gambar sebelah kiri, dua elektron Xe masing-masing diapakai untuk berikatan secara kovalen dengan 2 atom F sehingga meninggalkan 3 pasangan elektron bebas pada atom pusat Xe. Hal yang sama terjadi pada molekul XeF4 dimana 4 elektron Xe dipakai untuk berikatan dengan 4 elektron dari 4 atom F, sehingga meninggalkan 2 pasangan elektron bebas pada atom pusat Xe.


Lihat gambar diatas XeF2 memiliki 2 pasangan elekktron terikat (PET) dan 3 pasangan elektron bebas (PEB) jadi total ada 5 pasangan elektron yang terdapat pada XeF2, hal ini menandakan bahwa geometri molekul atau kerangka dasar molekul XeF2 adalah trigonal bipiramid. Karena terdapat 3 PEB maka PEB ini masing masing akan menempati posisi ekuatorial pada kerangka trigonal bipiramid, sedangkan PET akan menempati posisi aksial yaitu pada bagian atas dan bawah. Posisi inilah posisi yang stabil apabila terdapat atom dengan 2 PET dan 3 PEB sehingga menghasilkan bentuk molekul linear. Jadi bentul molekul XeF2 adalah linier.(lihat gambar dibawah).


Lihat gambar strutur lewis XeF4 memiliki 4 pasangan elekktron terikat (PET) dan 2 pasangan elektron bebas (PEB) jadi total ada 6 pasangan elektron yang terdapat pada XeF4, hal ini menandakan bahwa geometri molekul atau kerangka dasar molekul XeF4 adalah oktahedral. Karena terdapat 2 PEB maka PEB ini masing masing akan menempati posisi aksial pada kerangka oktahedral, sedangkan PET akan menempati posisi ekuatorial. Posisi inilah posisi yang stabil apabila terdapat atom dengan 4 PET dan 2 PEB sehingga menghasilkan bentuk molekul yang disebut segiempat planar. Jadi bentul molekul XeF2 adalah segiempat planar.(lihat gambar dibawah).

Kegunaan Gas Mulia dalam Kehidupan Sehari-hari

Ada banyak kegunaan gas mulia dalam kehidupan sehari-hari. Setiap gas mulia(He, Ne, Ar, Kr, Xe, Rn) menyumbangkan peranan penting, yaitu:

Kegunaan Helium:

 Untuk mengelas.
 Sebagai gas pelindung alam dalam penumbuhan kristal-kristal silikon dan germanium juga dalam memproduksi titanium dan zikronium.
 Sebagai pendingin reaktor nuklir.
 Sebagai gas yang digunakan di lorong angin.
 Memberi tekanan pada bahan bakar roket.
 Sebagai pengisi balon-balon raksasa yang memasang berbagai iklan.
 Adapun campuran Helium dan Oksigen dapat digunakan sebagai udara buatan untuk para penyelam dan para pekerja lainnya yang bekerja di bawah tekanan udara tinggi. Ada juga kegunaan dari perbandingan antara Helium (He) dan Oksigen (O2) yang berbeda-beda adalah untuk kedalaman penyelam yang berbeda-beda.
Helium sangat banyak digunakan untuk mengisi balon ketimbang hidrogen yang lebih berbahaya. Salah satu kegunaan helium yang lain adalah untuk menekan bahan bakar cair roket. Roket Saturn, seperti yang digunakan pada misi-misi Apollo, memerlukan sekitar 13 juta kaki kubik He.
Helium cair yang digunakan di Magnetic Resonance Imaging (MRI) tetap bertambah jumlahnya, sejalan dengan ditemukannya banyak kegunaan mesin ini di bidang kesehatan.
Helium juga digunakan untuk balon-balon raksasa yang memasang berbagai iklan perusahaan-perusahaan besar, termasuk Goodyear. Aplikasi lainnya sedang dikembangkan oleh militer AS adalah untuk mendeteksi peluru-peluru misil yang terbang rendah. Badan Antariksa AS NASA juga menggunakan balon-balon berisi gas helium untuk mengambil sampel atmosfer di Antartika untuk menyelidiki penyebab menipisnya lapisan ozon.

Kegunaan Neon :

Neon dapat digunakan untuk pengisi bola lampu di landasan pesawat terbang. Karena Ne menghasilkan cahaya terang dengan intensitas tinggi apabila dialiri arus listrik.
Neon cair digunakan sebagai zat pendingin.
Neon digunakan sebagai penangkal petir dan pengisi tabung-tabung televisi.
Meski neon membutuhkan ruang yang luas pada penggunaannya, Neon berfungsi sebagai indikator tegangan tinggi, penangkap kilat, tabung wave meter dan tabung televisi. Neon dan helium digunakan dalam pembuatan laser gas. Neon cair sekarang tersedia secara komersial dan sangat penting diterapkan sebagai pembeku embrio (bakal makhluk hidup) yang ekonomis

Kegunaan Argon:

Pengisi bola lampu, karena Argon tidak bereaksi dengan filamen walaupun pada temperatur tinggi.
Pengisi tabung pemadam kebakaran.
Digunakan dalam bola lampu pijar listrik dan tabung fluoresen pada tekanan sekitar 400 Pa, tabung pengisian cahaya , tabung kilau dan lain-lain. Argon juga digunakan sebagai gas inert yang melindungi dari bunga api listrik dalam proses pengelasan, produksi titanium dan unsur reaktif lainya, dan juga sebagai lapisan pelindung dalam pembuatan kristal silikon dan germanium.

Kegunaan Kripton :

Pengisi bola lampu blitz pada kamera.
Kripton dapat digabungkan dengan gas lain untuk membuat sinar hijau kekunin :gan yang dapat digunakan sebagai kode dengan melemparkannya ke udara.
Dicampurkan dengan Argon untuk mengisi lampu induksi
Kripton klatrat dibuat dengan menggunakan hidrokuinon dan fenol. 85Kr dapat digunakan untuk analisis kimia dengan menanamkan isotop kripton dalam beragam zat padat. Selama proses ini, terbentuk kriptonate. Aktivitas kriptonate sangat sensitif dalam reaksi kimia dalam bentuk larutan. Karenanya, konsentrasi reaktan pun jadi dapat ditetapkan. Kripton digunakan sebagai lampu kilat fotografi tertentu untuk fotografi berkecepatan tinggi.

Kegunaan Xenon :

Xenon biasa digunakan untuk mengisi lampu blizt pada kamera.
Isotop-nya dapat digunakan sebagai reaktor nuklir.
Gas ini digunakan dalam pembuatan tabung elektron, lampu stoboskopik (lampu neon yang berkedip dengan frekuensi tertentu), lampu bakterisida, dan lampu yang digunakan untuk mengeluarkan laser rubi yang menghasilkan sinar yang koheren. Xenon digunakan dalam medan energi nuklir dalam bejana ggelembung udara, probe, dan penerapan lainnya di mana dibutuhkan bobot atom tinggi. Senyawaa perxenate digunakan kimia analisis sebagai zat oksidator. 133Xe dan 135Xe dihasilkan oleh iradiasi neutron dalam reaktor nuklir dingin. 133Xe memiliki banyak kegunaan sebaai isotop. Unsur ini tersedia dalam kontainer gas dalam kaca bersegel dengan tekanan standar. Xenon tidak beracun tapi senyawanya sangat beracun karena sifat oksidatornya yang sangat kuat.

Kegunaan Radon :

Radon terkadang digunakan oleh beberapa rumah sakit untuk kegunaan terapeutik. Radon juga digunakan dalam pendidikan hidrologi, yang mengkaji interaksi antara air bawah tanah dan sungai pengikatan radon dalam air sungai merupakan petunjuk bahwa terdapat sumber air bawah tanah.
Radon masih diproduksi untuk kegunaan terapi di beberapa rumah sakit dengan memompanya dari sumber radium dan memberinya segel pada” tabung menit”, yang disebut “bibit” atau “jarum”, untuk diberikan kepada pasien. Hal ini telah banyak dihentikan oleh kebanyakan rumah sakit yang bisa mendapatkan bibitnya langsung dari suplier, sesuai dengan kebutuhan dan dosis yang diinginkan.
(sumber :makalah kimia'08 fkip kimia unila)

Tidak ada komentar:

Posting Komentar